The objective of this study was to develop a scientific approach for investigating Korean dance in detail, and to examine the intense expressions and various movements, which are based on Danjeon breathing. For the purpose, we analyzed the movement changes and distribution of forces resulting from the switch in movement between exhalation and inhalation while bending, which is the most basic movement in Korean dance. The following conclusions were drawn from this study. In Korean dance, bending with breathing involves less back-and-forth-movement and more up-and-down movement, as compared to bending without breathing; this indicates greater body stability and a wider range of movements while bending with breathing. In addition, less time is required for bending with breathing at the point of switching from exhalation to inhalation, and it involves less movement of the supporting leg; thus, vending with breathing involves faster switching from bending movements to extending movements. While bending, the raised leg goes through a less smooth curve while breathing, which indicates stronger movement of the toes. Bending with breathing requires a greater braking force than bending without breathing, and the vertical force, generated by switching from exhalation to inhalation, is transferred to extending movements using the ground load. The results of this study can be potentially employed to investigate the expressions used in Korean dance on th basis of its principle of forces. Korean dance has evolved into various creative forms, and basic analytical studies of these diverse forms and related breathing methods re required in the future.
Professional dancers demonstrate an amazing ability to control their balance. However, little is known about how they coordinate their body segments for such superior control. In this study, we investigated how dancers coordinate body segments when a physical perturbation is given to their body. A custom-made machine was used to provide a short pulling impulse at the waist in the anterior direction to ten dancers and ten non-dancers. We used Uncontrolled Manifold analysis to quantify the variability in the task-relevant space and task-irrelevant space within the multi-dimensional space made up of individual segments’ centers of mass with a velocity adjustment. The dancers demonstrated greater utilization of redundant degrees of freedom (DoFs) supported by the greater task-irrelevant variability as compared to non-dancers. These findings suggest that long-term specialized dance training can improve the central nervous system’s ability to utilize the redundant DoFs in the whole-body system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.