The UpRight library seeks to make Byzantine fault tolerance (BFT) a simple and viable alternative to crash fault tolerance for a range of cluster services. We demonstrate UpRight by producing BFT versions of the Zookeeper lock service and the Hadoop Distributed File System (HDFS). Our design choices in UpRight favor simplifying adoption by existing applications; performance is a secondary concern. Despite these priorities, our BFT Zookeeper and BFT HDFS implementations have performance comparable with the originals while providing additional robustness.
Abstract-With the development of deep learning, supervised learning has frequently been adopted to classify remotely sensed images using convolutional networks (CNNs). However, due to the limited amount of labeled data available, supervised learning is often difficult to carry out. Therefore, we proposed an unsupervised model called multiple-layer feature-matching generative adversarial networks (MARTA GANs) to learn a representation using only unlabeled data. MARTA GANs consists of both a generative model G and a discriminative model D. We treat D as a feature extractor. To fit the complex properties of remote sensing data, we use a fusion layer to merge the mid-level and global features. G can produce numerous images that are similar to the training data; therefore, D can learn better representations of remotely sensed images using the training data provided by G. The classification results on two widely used remote sensing image databases show that the proposed method significantly improves the classification performance compared with other state-of-theart methods.
Given a query photo issued by a user (q-user), the landmark retrieval is to return a set of photos with their landmarks similar to those of the query, while the existing studies on the landmark retrieval focus on exploiting geometries of landmarks for similarity matches between candidate photos and a query photo. We observe that the same landmarks provided by different users over social media community may convey different geometry information depending on the viewpoints and/or angles, and may subsequently yield very different results. In fact, dealing with the landmarks with low quality shapes caused by the photography of q-users is often nontrivial and has seldom been studied. In this paper we propose a novel framework, namely multi-query expansions, to retrieve semantically robust landmarks by two steps. Firstly, we identify the top-k photos regarding the latent topics of a query landmark to construct multi-query set so as to remedy its possible low quality shape . For this purpose, we significantly extend the techniques of Latent Dirichlet Allocation. Then, motivated by the typical collaborative filtering methods, we propose to learn a collaborative deep networks based semantically, nonlinear and high-level features over the latent factor for landmark photo as the training set, which is formed by matrix factorization over collaborative user-photo matrix regarding the multi-query set. The learned deep network is further applied to generate the features for all the other photos, meanwhile resulting into a compact multiquery set within such space. Then, the final ranking scores are calculated over the high-level feature space between the multi-query set and all other photos, which are ranked to serve as the final ranking list of landmark retrieval. Extensive experiments are conducted on real-world social media data with both landmark photos together with their user information to show the superior performance over the existing methods, especially our recently proposed multi-query based mid-level pattern representation method [Wang et al., 2015a].
We consider the problem of localizing unseen objects in weakly labeled image collections. Given a set of images annotated at the image level, our goal is to localize the object in each image. The novelty of our proposed work is that, in addition to building object appearance model from the weakly labeled data, we also make use of existing detectors of some other object classes (which we call "familiar objects"). We propose a method for transferring the appearance models of the familiar objects to the unseen object. Our experimental results on both image and video datasets demonstrate the effectiveness of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.