In this study, a general analytical model for the single‐well circulation system is developed to analyze transient drawdown in a confined aquifer. The analytical solution of transient drawdown in the Laplace domain, which is numerically inverted into the time domain using the Stehfest method, is derived by employing a combination of the Laplace and Fourier cosine transforms. The characteristics of transient drawdown and the effects of different parameters related to the single‐well circulation system on drawdown are investigated. Furthermore, the analytical solution under steady‐state conditions is obtained using the Fourier cosine transform. The results show that steady drawdown contours are symmetric around a horizontal midplane of an aquifer and vary tremendously with distance from the well axis. The contours of drawdown around the sealed section are dense, meaning that the hydraulic gradient in this area is relatively large. The sensitivity analysis, performed to evaluate the characteristics of drawdown to changes in each parameter, indicates that the radial hydraulic conductivity and the length of the sealed section have a large impact on the drawdown and that each parameter has its influence period on the drawdown.
Summary
Current rate-transient-analysis tools for gas wells producing under boundary-dominated-flow (BDF) conditions largely rely on the deployment of the Arps empirical decline models (Arps 1945), or liquid-based analytical models rewritten in terms of pseudofunctions. Recently, Stumpf and Ayala (2016) demonstrated that, contrary to common practice, decline exponents (b) used in Arps’ hyperbolic equations when applied to gas-well analysis can be rigorously estimated before any field-production data are collected. This determination is solely dependent on gas pressure/volume/temperature (PVT) properties and prevailing constant-bottomhole-pressure (BHP) specification for volumetric, single-phase gas-flow conditions. In the study, we extend that work to a more-realistic variable-BHP condition, which is the most common production-specification condition, in terms of the ratio of changing BHP to average reservoir pressure. The decline exponent (b) is thus rederived, and it is shown that under such conditions, variable BHP hyperbolic decline coefficients become solely dependent on fluid PVT properties and take their largest possible magnitude compared with constant-BHP production. Step-by-step analysis procedures are presented that enable explicit and straightforward estimation of original gas in place (OGIP) and other reservoir properties by universal-type-curve and straight-line analysis. Finally, several cases using simulated and field data are discussed in detail to validate the capabilities of the proposed approach.
The purpose of this study is to elucidate the water dynamics in sea cucumber (Stichopus japonicas) during drying processin situby the fast and non-destructive low field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) methods.T2relaxation spectra in three-dimensional (3D) color map surface image from LF-NMR showed three main peaks assigned to bound water with relaxation time less than 2 ms, immobilized water in the range of 15–150 ms and extra-collagen fibrillar bulk water or free water adhered onto the sea cucumber with the longest relaxation time 200–1600 ms. The water dynamics in sea cucumber during drying process was clearly observed from the 3D color map surface image. Significant correlations between the LF-NMRT2parameters (ATotal, A23andT23) and TPA parameters were observed, demonstrating that LF-NMR might be a complementary technique in monitoring the textural properties of sea cucumber during drying process.
A microwave thruster system that can convert microwave power directly to thrust without a gas propellant is developed. In the system, a cylindrical tapered resonance cavity and a magnetron microwave source are used respectively as the thruster cavity and the energy source to generate the electromagnetic wave. The wave is radiated into and then reflected from the cavity to form a pure standing wave with non-uniform electromagnetic pressure distribution. Consequently, a net electromagnetic thrust exerted on the axis of the thruster cavity appears, which is demonstrated through theoretical calculation based on the electromagnetic theory. The net electromagnetic thrust is also experimentally measured in the range from 70 mN to 720 mN when the microwave output power is from 80 W to 2500 W.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.