For the problem of classification and identification of defects in polyethylene (PE) gas pipelines, this paper firstly performs preliminary screening of the acquired images and acquisition efficiency of defective image acquisition was improved. Images of defective PE gas pipelines were pre-processed. Then, edge detection of the defective images was performed using the improved Sobel algorithm and an adaptive threshold segmentation method was applied to segment the defects in the pipeline images. Finally, the defect images were morphologically processed to obtain binary images. The obtained binary images were applied with VGG16 to complete the training of the defect classifier. The experimental findings show that in the TensorFlow API environment, the test set’s highest accuracy reached 97%, which can achieve the identification of defect types of underground PE gas transmission pipelines.
In recent years, polyethylene (PE) pipes have been widely utilized for urban natural gas transmission. However, as the use of high-density polyethylene (HDPE) pipes increases, their service life and long-term performance assessment have become one of the most significant issues to be addressed. There has been a ton of studies on PE pipe life prediction techniques both domestically and internationally, but very little has been carried out on PE pipe life prediction in actual gas working environments with varying acid and alkaline levels. This experiment accelerates the aging of PE pipes using acid and alkaline corrosion immersion experiments to determine the lifespan of PE pipes. This study aims to investigate the performance changes of HDPE under strong, weak, and neutral corrosion conditions using corrosion solutions with PH values of 1, 5, and 8, to propose the impact of corrosion caused by various acids and alkalies on the HDPE aging life for natural gas, and to develop a mathematical model between the aging life of polyethylene and the PH values of acid and alkali corrosion solutions. The studies involved soaking and corroding HDPE pipes with various acidity and alkalinity chemicals to speed up the aging process, and then the tensile test was used to determine the mechanical characteristics of the aged PE pipes. Based on our findings, the empirical equation between acidity and service life of PE pipes is obtained by the mathematical fitting method, and a life prediction model of buried city gas HDPE pipes is proposed. The actual life of the aged pipes is determined by the relationship between strain-hardening (SH) modulus and aging time. The findings demonstrate that the service life of PE pipes changes with different levels of acidity and alkalinity: 1.872 days, 1060.507 days, and 1128.58 days following corrosive solution-accelerated aging with solution acidities of PH1, PH5, and PH8, respectively. The life prediction method applies to various plastic pipes in comparable environments as well as HDPE city gas pipes that are subject to acid and alkali corrosion forces.
After around 50 years of development, the key substance known as polyethylene has been extremely influential in a variety of industries. This paper investigates how polyethylene materials have been used in the domains of water, packaging, and medicine to advance contemporary society in order to comprehend the physical and chemical alterations that polyethylene undergoes after being subjected to long-term environmental variables (e.g., temperature, light, pressure, microbiological factors, etc.). For the safe operation of polyethylene materials, it has always been of the utmost importance to evaluate polyethylene’s service life effectively. This paper reviews some of the most common literature journals on the influence of environmental factors on the degradation process of polyethylene materials and describes methods for predicting the lifetime of degradable polyethylene materials using accelerated aging tests. The Arrhenius equation, the Ozawa–Flynn–Wall (OFW) method, the Friedman method, the Coats–Redfern method, the Kissinger method and Kissinger–Akahira–Sunose (KAS) method, Augis and Bennett’s method, and Advanced Isoconversional methods are all discussed, as well as the future development of polyethylene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.