Investigating the absorption and scattering effects of atmospheric particles, i.e., raindrops and fog droplets, is required to establish a comprehensive and accurate channel model. However, for long-distance communication in outdoor scenarios, research on the propagation characterization of fog and rain attenuation in the terahertz (THz) band is insufficient. In this study, fog and rain attenuation characterization with different conditions are characterized. First, fog attenuation at different temperatures and diverse visibility is explored using Rayleigh approximation theory and Mie theory. The results demonstrate that visibility and frequency have a stronger effect than temperature on fog attenuation. Then, rain attenuation as a function of rainfall rate is theoretically determined using Mie theory and the Joss, M-P, and Weibull distribution. The results show that rainfall rate and frequency have greater impact than raindrop distribution on rain attenuation. There are large differences in rainfall attenuation under diverse distributions. Accurate fog and rainfall attenuation information can be used to better estimate path loss and the link budget for terahertz communication in outdoor scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.