Practical wearable e‐textiles must be durable and retain, as far as possible, the textile properties such as drape, feel, lightweight, breathability, and washability that make fabrics suitable for clothing. Early e‐textile garments were realized by inserting standard portable electronic devices into bespoke pockets and arranging interconnects and cabling across the garment. In these examples, the textile merely served as a vehicle to house the electronics and had no inherent electronic functionality. A reduction in electronic component size, the development of flexible circuits, and the ability to weave robust interconnects offer the potential for improved levels of electronic integration within the textile. The weaving of electronic circuit filaments less than 2 mm wide into fabrics such that the electronics are fully concealed in the textile and given extra protection by the surrounding textile fibers is introduced. The failure mechanisms for different filament circuit designs before and after integration into the textile are investigated with a 90° cyclical bending test. Results show that encapsulated filament circuits embedded within the textile survive 45 washing cycles and more than 1500 cycles of 90° bending around a bending radius of 10 mm, performing five times better than equivalent filament circuits before integration into the fabric.
Conductive textiles are fabrics that include conductive yarns woven into or conductive tracks printed on to the textiles. Conductive textiles have attracted significant attention, since they are fundamental for the integration of electronic functions to achieve wearable devices. Screen printing is a well-established and cost-effective fabrication method; it enables a versatile layout of conductive tracks. The limitation of the current screen-printed conductive textiles is low durability to weathering, abrasion and washing. This paper presents a process for producing a waterproof and durable conductive textile using only screen printing. A three functional layer design was used to fabricate the durable conductive tracks. Firstly, an interface layer was printed to provide a smooth surface for subsequent printing, under-side protection and electrical insulation. Next, a silver layer provided the conductive track and finally an encapsulation layer was printed on top to provide upper-side protection and electrical insulation. The printed silver tracks achieved maximum conductivity using a single print. The conductivity of the silver tracks returned to its original value when they were dried after soaking in water continuously for 24 hours.
We report a direct fabrication of an omnidirectional negative microlens array on a curved substrate by a femtosecond laser enhanced chemical etching process, which is utilized as a molding template for duplicating bioinspired compound eyes. The femtosecond laser treatment of the curved glass substrate employs a common x-y-z stage without rotating the sample surface perpendicular to the laser beam, and uniform, omnidirectional-aligned negative microlenses are generated after a hydrofluoric acid etching. Using the negative microlens array on the concave glass substrate as a molding template, we fabricate an artificial compound eye with 3000 positive microlenses of 95-μm diameter close-packed on a 5-mm polymer hemisphere. Compared to the transferring process, the negative microlenses directly fabricated on the curved mold by our method are distortion-free, and the duplicated artificial eye presents clear and uniform imaging capabilities. This work provides a facile and efficient route to the fabrication of microlenses on any curved substrates without complicated alignment and motion control processes, which has the potential for the development of new microlens-based devices and systems.
Electrotherapy device Highlights • A fabric electrode has been fabricated using the combination of weaving and printing technologies. • The conductive yarn pattern was optimized (2.5mm by 2.5mm grid) to achieve even current distribution of the electrode layer. • Asymmetric centrifugal mixing can breakdown the carbon particles and produce a high density (without voids) electrode. • The wearable electrotherapy was comfortable to wear and easy to use. • The prototype has been tested on six volunteers with osteoarthritis knee joint pain. Four out of six have reported noticeable pain reduction by using the device.
This paper details the design, fabrication and testing of flexible textile-concealed Radio Frequency Identification (RFID) tags for wearable applications in a smart city/smart building environment. The proposed tag designs aim to reduce the overall footprint, enabling textile integration whilst maintaining the read range. The proposed RFID filament is less than 3.5 mm in width and 100 mm in length. The tag is based on an electrically small (0.0033 λ 2 ) high-impedance planar dipole antenna with a tuning loop, maintaining a reflection coefficient less than −21 dB at 915 MHz, when matched to a commercial RFID chip mounted alongside the antenna. The antenna strip and the RFID chip are then encapsulated and integrated in a standard woven textile for wearable applications. The flexible antenna filament demonstrates a 1.8 dBi gain which shows a close agreement with the analytically calculated and numerically simulated gains. The range of the fabricated tags has been measured and a maximum read range of 8.2 m was recorded at 868 MHz Moreover, the tag’s maximum calculated range at 915 MHz is 18 m, which is much longer than the commercially available laundry tags of larger length and width, such as Invengo RFID tags. The reliability of the proposed RFID tags has been investigated using a series of tests replicating textile-based use case scenarios which demonstrates its suitability for practical deployment. Washing tests have shown that the textile-integrated encapsulated tags can be read after over 32 washing cycles, and that multiple tags can be read simultaneously while being washed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.