MYC, as a powerful transcription factor, plays a vital role in various cancers. The clinical significance of MYC alterations in diffuse large B-cell lymphoma (DLBCL) has been investigated for a long time. In this study, we comprehensively summarize the different alterations of MYC in DLBCL, including MYC overexpression, MYC translocations, MYC mutations, and increased gene copy number of MYC. Noteworthy, lone MYC overexpression or MYC translocation is not significantly associated with poor clinical outcomes, and their detrimental effects depend on the genetic alterations of BCL2 or BCL6. Both double-expressor DLBCL (DE-DLBCL), defined as overexpression of MYC and BCL2 proteins, and double-hit lymphoma (DHL), defined as a dual translocation of MYC together with BCL2 or BCL6, represent the distinct subgroups of DLBCL with inferior clinical outcomes. The mechanism may be that MYC activation induces cell proliferation, without the threat of the apoptotic brake in the presence of BCL2 overexpression. In addition, most of MYC mutations are present with favorable prognosis, and the nonsignificant effect of MYC copy number amplification has been observed. It has been proved that cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab show limited effects for DHL or DE-DLBCL, and the rituximab plus dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin seem to be efficacious for DHL. The novel therapy is urgently needed for clinical improvement in DHL and DE-DLBCL.
Preclinical studies reveal maternal exercise as a promising intervention to reduce the transmission of multi-generational metabolic dysfunction caused by maternal obesity. The benefits of maternal exercise on offspring health may arise from multiple factors and have recently been shown to involve DNA demethylation of critical hepatic genes leading to enhanced glucose metabolism in offspring. Histone modification is another epigenetic regulator, yet the effects of maternal obesity and exercise on histone methylation in offspring are not known. Here, we find that maternal high fat diet (HFD; 60% kcal from fat) induced dysregulation of offspring liver glucose metabolism in C57BL/6 mice through mechanism involving increased reactive oxygen species, WD repeat-containing 82 (WDR82) carbonylation, and inactivation of H3K4 methyltransferase leading to decreased H3K4me3 at the promoters of glucose metabolic genes. Remarkably, the entire signal was restored if the HFD-fed dams had exercised during pregnancy. WDR82 overexpression in hepatoblasts mimicked the effects of maternal exercise on H3K4me3 levels. Placental superoxide dismutase 3 (SOD3), but not antioxidant treatment with N-acetylcysteine was necessary for the regulation of H3K4me3, gene expression and glucose metabolism. Maternal exercise regulates a multi-component epigenetic system in fetal liver resulting in the transmission of the benefits of exercise to offspring.
Objective: To establish a prediction model based on autophagy-related lncRNAs and investigate the functional enrichment of autophagy-related lncRNAs in colorectal cancer.Methods: TCGA database was used to extract the transcriptome data and clinical features of colorectal cancer patients. HADb was used to obtain autophagy-related genes. Pearson correlation analysis was performed to identify autophagy-related lncRNAs. The autophagy-related lncRNAs with prognostic values were selected. Based on the selected lncRNAs, the risk score model and nomogram were constructed, respectively. Calibration curve, concordance index, and ROC curve were performed to evaluate the predictive efficacy of the prediction model. GSEA was performed to figure out the functional enrichment of autophagy-related lncRNAs.Results: A total of 13413 lncRNAs and 938 autophagy-related genes were obtained. A total of 709 autophagy-related genes were identified in colon cancer tissues, and 11 autophagy-related lncRNAs (AL138756.1, LINC01063, CD27-AS1, LINC00957, EIF3J-DT, LINC02474, SNHG16, AC105219.1, AC068580.3, LINC02381, and LINC01011) were finally selected and set as prognosis-related lncRNAs. According to the risk score, patients were divided into the high-risk and low-risk groups, respectively. The survival K–M (Kaplan–Meier) curve showed the low-risk group exhibits better overall survival than the high-risk group. The AUCs under the ROC curves were 0.72, 0.814, and 0.83 at 1, 3, and 5 years, respectively. The C-index (concordance index) of the model was 0.814. The calibration curves at 1, 3, and 5 years showed the predicting values were consistent with the actual values. Functional enrichment analysis showed that autophagy-related lncRNAs were enriched in several pathways.Conclusions: A total of 11 specific autophagy-related lncRNAs were identified to own prognostic value in colon cancer. The predicting model based on the lncRNAs and clinical features can effectively predict the OS. Furthermore, functional enrichment analysis showed that autophagy-related genes were enriched in various biological pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.