The immobilization of fluorescent photoinduced electron transfer (PET) switches/sensors into solid state, which usually cannot maintain their identical properties in solution, has remained a big challenge. Herein, a water-stable anthracene and maleimide appended zirconium-based-metal-organic framework (Zr-MOF; UiO-68-An/Ma) is reported. Unlike the regular intramolecular "fluorophore-spacer-receptor" format, the separated immobilization of fluorescent (anthracene) and acceptor (maleimide) groups into the framework of a multivariate MOF can also favor a pseudo-intramolecular fluorescent PET process, resulting in UiO-68-An/Ma with very weak fluorescence. Interestingly, after Diels-Alder reaction or thiol-ene reaction of maleimide groups, the pseudo-intramolecular fluorescent PET process in UiO-68-An/Ma fails and the solid-state fluorescence of the crystals is recovered. In addition, UiO-68-An/Ma shows an interesting application as solid-state fluorescent turn-on sensor for biothiols, with the naked eye response at a low concentration of 50 µmol L within 5 min. This study represents a general strategy to enable the efficient tuning of fluorescent PET switches/sensors in solid state, and considering the fluorescence of the PET-based MOFs can be restored after addition of analyte/target species, this research will definitely inspire to construct stimuli-responsive fluorescent MOFs for interesting applications (e.g., logic gate) in future.
Physical and chemical technologies have been continuously progressing advances in neuroscience research. The development of research tools for closed-loop control and monitoring neural activities in behaving animals is highly desirable. In this paper, we introduce a wirelessly operated, miniaturized microprobe system for optical interrogation and neurochemical sensing in the deep brain. Via epitaxial liftoff and transfer printing, microscale light-emitting diodes (micro-LEDs) as light sources and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-coated diamond films as electrochemical sensors are vertically assembled to form implantable optoelectrochemical probes for real-time optogenetic stimulation and dopamine detection capabilities. A customized, lightweight circuit module is employed for untethered, remote signal control, and data acquisition. After the probe is injected into the ventral tegmental area (VTA) of freely behaving mice, in vivo experiments clearly demonstrate the utilities of the multifunctional optoelectrochemical microprobe system for optogenetic interference of place preferences and detection of dopamine release. The presented options for material and device integrations provide a practical route to simultaneous optical control and electrochemical sensing of complex nervous systems.
We construct a variational explicit-solute implicit-solvent model for the solvation of molecules. Central in this model is an effective solvation free-energy functional that depends solely on the position of solute-solvent interface and solute atoms. The total free energy couples altogether the volume and interface energies of solutes, the solute-solvent van der Waals interactions, and the solute-solute mechanical interactions. A curvature dependent surface tension is incorporated through the so-called Tolman length which serves as the only fitting parameter in the model. Our approach extends the original variational implicit-solvent model of Dzubiella, Swanson, and McCammon [Phys. Rev. Lett. 2006, 96, 087802 and J. Chem. Phys. 2006, 124, 084905] to include the solute molecular mechanics. We also develop a novel computational method that combines the level-set technique with optimization algorithms to determine numerically the equilibrium conformation of nonpolar molecules. Numerical results demonstrate that our new model and methods can capture essential properties of nonpolar molecules and their interactions with the solvent. In particular, with a suitable choice of the Tolman length for the curvature correction to the surface tension, we obtain the solvation free energy for a benzene molecule in a good agreement with experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.