Background: Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data analysis, little attention has been paid to uncertainty in the results obtained.
Wang W, Sudre GP, Xu Y, Kass RE, Collinger JL, Degenhart AD, Bagic AI, Weber DJ. Decoding and cortical source localization for intended movement direction with MEG. J Neurophysiol 104: 2451-2461. First published August 25, 2010 doi:10.1152/jn.00239.2010. Magnetoencephalography (MEG) enables a noninvasive interface with the brain that is potentially capable of providing movement-related information similar to that obtained using more invasive neural recording techniques. Previous studies have shown that movement direction can be decoded from multichannel MEG signals recorded in humans performing wrist movements. We studied whether this information can be extracted without overt movement of the subject, because the targeted users of brain-controlled interface (BCI) technology are those with severe motor disabilities. The objectives of this study were twofold: 1) to decode intended movement direction from MEG signals recorded during the planning period before movement onset and during imagined movement and 2) to localize cortical sources modulated by intended movement direction. Ten able-bodied subjects performed both overt and imagined wrist movement while their cortical activities were recorded using a whole head MEG system. The intended movement direction was decoded using linear discriminant analysis and a Bayesian classifier. Minimum current estimation (MCE) in combination with a bootstrapping procedure enabled source-space statistical analysis, which showed that the contralateral motor cortical area was significantly modulated by intended movement direction, and this modulation was the strongest ϳ100 ms before the onset of overt movement. These results suggest that it is possible to study cortical representation of specific movement information using MEG, and such studies may aid in presurgical localization of optimal sites for implanting electrodes for BCI systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.