The molecular mechanisms underlying early/recycling endosomes-to-TGN transport are still not understood. We identified interactions between the TGN-localized putative t-SNAREs syntaxin 6, syntaxin 16, and Vti1a, and two early/recycling endosomal v-SNAREs, VAMP3/cellubrevin, and VAMP4. Using a novel permeabilized cell system, these proteins were functionally implicated in the post-Golgi retrograde transport step. The function of Rab6a' was also required, whereas its closely related isoform, Rab6a, has previously been implicated in Golgi-to-endoplasmic reticulum transport. Thus, our study shows that membrane exchange between the early endocytic and the biosynthetic/secretory pathways involves specific components of the Rab and SNARE machinery, and suggests that retrograde transport between early/recycling endosomes and the endoplasmic reticulum is critically dependent on the sequential action of two members of the Rab6 subfamily.
It is proposed here that the delayed cytotoxicity of thioguanine involves the postreplicative DNA mismatch repair system. After incorporation into DNA, the thioguanine is chemically methylated by S-adenosylmethionine to form S6-methylthioguanine. During DNA replication, the S6-methylthioguanine directs incorporation of either thymine or cytosine into the growing DNA strand, and the resultant S6-methylthioguanine-thymine pairs are recognized by the postreplicative mismatch repair system. Azathioprine, an immunosuppressant used in organ transplantation, is partly converted to thioguanine. Because the carcinogenicity of N-nitrosamines depends on formation of O6-alkylguanine in DNA, the formation of the analog S6-methylthioguanine during azathioprine treatment may partly explain the high incidence of cancer after transplantation.
The sorting nexin (SNX) protein family is implicated in regulating membrane traffic, but the mechanism is still unknown. We show that SNX3 is associated with the early endosome through a novel motif (PX domain) capable of interaction with phosphatidylinositol-3-phosphate (PtdIns(3)P). Overexpression of SNX3 alters endosomal morphology and delays transport to the lysosome. Transport from the early to the recycling endosome is affected upon microinjection of SNX3 antibodies. Our results highlight a novel mechanism by which SNX proteins regulate traffic and uncover a novel class of effectors for PtdIns(3)P.
PRL-1, -2, and -3 represent a novel class of proteintyrosine phosphatase with a C-terminal prenylation motif. Although PRL-1 has been suggested to be associated with the nucleus, the presence of three highly homologous members and the existence of a prenylation motif call for a more detailed examination of their subcellular localization. In the present study, we first demonstrate that mouse PRL-1, -2, and -3 are indeed prenylated. Examination of N-terminal epitope-tagged PRL-1, -2, and -3 expressed in transiently transfected cells suggests that PRL-1, -2, and -3 are present on the plasma membrane and intracellular punctate structures. Stable Chinese hamster ovary cells expressing PRL-1 and -3 in an inducible manner were established. When cells were treated with brefeldin A, PRL-1 and -3 accumulated in a collapsed compact structure around the microtubuleorganizing center. Furthermore, PRL-1 and -3 redistributed into swollen vacuole-like structures when cells were treated with wortmannin. These characteristics of PRL-1 and -3 are typical for endosomal proteins. Electron microscope immunogold labeling reveals that PRL-1 and -3 are indeed associated with the plasma membrane and the early endosomal compartment. Expression of PRL-3 is detected in the epithelial cells of the small intestine, where PRL-3 is present in punctate structures in the cytoplasm. When cells are treated with FTI-277, a selective farnesyltransferase inhibitor, PRL-1, -2, and -3 shifted into the nucleus. Furthermore, a mutant form of PRL-2 lacking the C-terminal prenylation signal is associated with the nucleus. These results establish that the primary association of PRL-1, -2, and -3 with the membrane of the cell surface and the early endosome is dependent on their prenylation and that nuclear localization of these proteins may be triggered by a regulatory event that inhibits their prenylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.