Efficient coordination among large numbers of heterogeneous agents promises to revolutionize the way in which some complex tasks, such as responding to urban disasters can be performed. However, state of the art coordination algorithms are not capable of achieving efficient and effective coordination when a team is very large. Building on recent successful token-based algorithms for task allocation and information sharing, we have developed an integrated and efficient approach to effective coordination of large scale teams. We use tokens to encapsulate anything that needs to be shared by the team, including information, tasks and resources. The tokens are efficiently routed through the team via the use of local decision theoretic models. Each token is used to improve the routing of other tokens leading to a dramatic performance improvement when the algorithms work together. We present results from an implementation of this approach which demonstrates its ability to coordinate large teams.
Coordinating hundreds or thousands of unmanned aerial vehicles (UAVs), presents a variety of new exciting challenges, over and above the challenges of building single UAVs and small teams of UAVs. We are specifically interested in coordinating large groups of Wide Area Search Munitions (WASMs), which are part UAV and part munition. We are developing a "flat", distributed organization to provide the robustness * This research has been supported by AFRL/MNK grant F08630-03-1-0005.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.