The gene for human angiogenin (Ang), a member of the ribonuclease superfamily, was fused to a gene encoding a single-chain antibody (sFv) against the human transferrin receptor. Three Ang single-chain immunofusion proteins (AngsFvs) were constructed with variations in the type of linker connecting the VL and VH chain [EGKSSGSGSESKEF, L1 or (GGGGS)3, L2] as well as with or without a spacer (FB) connecting the Ang and sFv (AngFBsFvL1 or L2; AngsFv(L2)]. Although the nature of the linker did not affect the enzymatic activity of the FB-containing fusion proteins, the fusion protein containing the L2 linker was 2.3-fold more effective than the L1 linker in competing with the labeled monoclonal IgG1 antibody for binding to the transferrin receptor. The fusion protein containing the L2 linker without the FB spacer exhibited a 13-fold decrease in binding to the transferrin receptor as well as a decrease in its capacity to degrade tRNA and to inhibit translation in the rabbit reticulocyte lysate compared to its counterpart containing the FB spacer. Binding of placental ribonuclease inhibitor (PRI) to Ang also was affected by the nature of the linker and by the presence or absence of a spacer. PRI bound to Ang and AngFBsFv(L2) and inhibited their ribonuclease activity. A 3-fold greater concentration of PRI, however, did not affect the activity of AngFBsFv(L1) or AngsFv(L2), suggesting that the conformation of these fusion proteins was altered. Binding of monoclonal and polyclonal anti-Ang antibodies to AngsFvs was also used to investigate conformational alterations of the fusion proteins. AngFBsFv(L2) was the least altered while AngFBsFv(L1) exhibited the greatest change in structure. Yet maximal concentrations of all AngsFvs elicited angiogenesis in the chick chorioallantoic membrane assay, demonstrating that Ang in all three fusion proteins remained functionally active. Consistent with all the activities, the fusion protein containing the FB spacer and L2 linker was the most cytotoxic to three different human tumor cell lines. The fusion protein lacking the FB spacer exhibited the least cytotoxicity. These data demonstrate that the linker connecting the VH-VL chains can affect the binding and cellular cytotoxicity of Ang immunofusions and that placement of a spacer between the antibody binding domains and Ang is necessary for optimal activity. Thus, a new class of targeted therapeutic agents containing Ang as the toxic moiety can be designed that potentially will be less immunogenic and less toxic than immunotoxins available currently.
Poly(ethylene glycol) (PEG) is used as an inert spacer in a wide range of biotechnological applications such as to display peptides and proteins on surfaces for diagnostic purposes. In such applications it is critical that the peptide is accessible to solvent and that the PEG does not affect the conformational properties of the peptide to which it is attached. Using molecular dynamics (MD) simulation techniques, we have investigated the influence of a commonly used PEG spacer on the conformation properties of a series of five peptides with differing physical-chemical properties (YGSLPQ, VFVVFV, GSGGSG, EEGEEG, and KKGKKG). The conformational properties of the peptides were compared (a) free in solution, (b) attached to a PEG-11 spacer in solution, and (c) constrained to a two-dimensional lattice via a (PEG-11)(3) spacer, mimicking a peptide displayed on a surface as used in microarray techniques. The simulations suggest that the PEG spacer has little effect on the conformational properties of small neutral peptides but has a significant effect on the conformational properties of small highly charged peptides. When constrained to a two-dimensional surface at peptide densities similar to those used experimentally, it was found that the peptides, in particular the polar and nonpolar peptides, aggregated strongly. The peptides also partitioned into the PEG layer. Potentially, this means that at high packing densities only a small fraction of the peptide attached to the surface would in fact be accessible to a potential interaction partner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.