Fast radio bursts (FRBs) are highly dispersed radio bursts prevailing in the universe [1][2][3] . The recent detection of FRB 200428 from a Galactic magnetar [4][5][6][7][8] suggested that at least some FRBs originate from magnetars, but it is unclear whether the majority of cosmological FRBs, especially the actively repeating ones, are produced from the magnetar channel. Here we report the detection of 1863 polarised bursts from the repeating source FRB 20201124A 9 during a dedicated radio observational campaign of Five-hundred-meter Aperture Spherical radio Telescope (FAST). The large sample of radio bursts detected in 88 hr over 54 days indicate a significant, irregular, short-time variation of the Faraday rotation measure (RM) of the source during the first 36 days, followed by a constant RM during the later 18 days. Significant circular polarisation up to 75% was observed in a good fraction of bursts. Evidence suggests that some low-level circular polarisation originates from the conversion from linear polarisation during the propagation of the radio waves, but an intrinsic radiation mechanism is required to produce the higher degree of circular polarisation. All of these features provide evidence for a more complicated, dynamically evolving, magnetised immediate environment around this FRB source. Its host galaxy was previously known 10-12 . Our optical observations reveal that it is a Milky-Way-sized, metal-rich, barred-spiral galaxy at redshift z = 0.09795 ± 0.00003, with the FRB source residing in a low stellar density, interarm region
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.