Due to the complexity of the marine environment, in deep-sea drilling, all kinds of strings are corroded by different deep-sea conditions for a long time, accompanied by high temperature and high pressure, which lead to the continuous change of mechanical properties of materials. In order to solve the problem that the material mechanical parameters cannot be accurately described in the performance analysis of the casing, deep-sea simulated corrosion and material damage experiments of P110 material were carried out in this paper. Mass loss and tensile experiments on corrosion-damaged test pieces were conducted under different corrosion experimental periods. The changes in mechanical properties of the material were analyzed. Equations of the variation of the equivalent yield strength and the equivalent tensile strength were obtained. The results show that the equivalent yield strength and the equivalent tensile strength decrease with the increase of the weight loss rate. Based on the experimental results and finite element analysis, a method for establishing the material corrosion model was proposed in this paper. The deep-sea drilling corrosion performance model of P110 material was established, which greatly reduced the error caused by the material uniformity assumption in finite element analysis. This paper provides a theoretical basis for the analysis of reliability and life of P110 materials in wells.
A friction material was developed after studying carbon fiber and melamine modified phenolic resin, which was made by thermo-compression craft. Thermal stress coupled field of friction material is analyzed by ABAQUS finite element software, the physical mechanical and friction and wear performance were investigated, the worn surfaces wear mechanism of friction materials were observed by Scanning Electron Microscope (SEM)and x-ray diffractometer, and comparison with ordinary phenolic resin friction material. It is shown that the friction and wear performance can be improved for friction material using both carbon fiber and melamine modified phenolic resin at the condition of high temperature, and the thermal decomposition and thermal fading of friction material were reduced in braking process. The mechanical properties and friction and wear properties of friction materials of melamine modified resin are improved compared with the friction materials of phenolic resin brake pads. It is thermal abrasion at high temperature due to phenolic resin decomposition accompanying with abrasive wear and fatigue abrasion, the wear mechanism of friction materials of melamine modified phenolic resin brake pad is fatigue abrasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.