Predicting the remaining useful life (RUL) of mechanical equipment can improve production efficiency while effectively reducing the life cycle cost and failure rate. This paper proposes a method for predicting the remaining service life of equipment through a combination of a deep convolutional autoencoder (DCAE) and a convolutional neural network (CNN). For rolling bearings, a health indicator (HI) could be built by combining DCAE and self-organizing map (SOM) networks, performing more advanced characterization against the original vibration data and modeling the degradation state of the rolling bearings. The HI serves as the label of the original vibration data, and the original data with such label is input into the prediction model of the RUL based on a one-dimensional convolutional neural network (1D-CNN). The model was trained for predicting the RUL of a rolling bearing. The bearing degradation dataset was evaluated to verify the method’s effectiveness. The results demonstrate that the constructed HI can characterize the bearing degradation state effectively and that the method of predicting the RUL can accurately predict the bearing degradation trend.
Aiming at fault diagnosis of axial piston pumps, a new fusion method based on the extreme-point symmetric mode decomposition method (ESMD) and random forests (RFs) was proposed. Firstly, the vibration signal of the axial piston pump was decomposed by ESMD to get several intrinsic mode functions (IMFs) and an adaptive global mean curve (AGMC) on the local side. Secondly, the total energy was selected as the data of feature extraction by analyzing the whole oscillation intensity of the signal. Thirdly, the data were preprocessed and the labels were set, and then, they were adopted as the training and testing set of machine learning samples. Lastly, the RFs model was created based on machine learning service (MLS) to diagnose the faults of the axial piston pump on the cloud. Using the test and verifying the data set for comparative testing, the fault diagnosis precision rates of the model are above 90.6%, the recall rates are more than 90.9%, the F1 score is higher than 90.7%, and the accuracy rate of this model reached 97.14%. A benchmark data simulation of mechanical transmission systems and an experimental data investigation of an axial piston pump are performed to manifest the superiority of the present method by comparing with classification and regression trees (CART) and support vector machine (SVM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.