Existing research on path following strategies generally does not consider the interference effect of active anti‐roll (AAR) action. This seriously affects the driving safety under extreme obstacle avoidance and other conditions. Therefore, based on the non‐cooperative Stackelberg equilibrium theory, this research proposes a lateral trajectory tracking strategy that considers AAR decision. First, a yaw‐roll coupled dynamic model of commercial vehicle with front wheel angle and AAR moment as input is established to describe the coupling effect of vehicle lateral and roll motions. Then, based on the Stackelberg equilibrium theory, active front steering (AFS) system and AAR bar system are modelled as the leader and follower in the leader–follower collaborative control strategy, respectively. Finally, simulation and experiments show that the leader–follower collaborative control strategy can effectively improve the control conflict between the two systems and improve the anti‐roll performance during trajectory tracking.
Commercial vehicles generally drive at a higher speed on structured expressways, and their higher center of mass leads to a lower rollover threshold and a greater rollover risk while steering. Therefore, the design of a lateral trajectory-tracking control strategy for commercial vehicles should not only consider the accuracy of trajectory tracking but also consider roll stability. Based on this control objective, a fuzzy linear quadratic controller was designed in this study to ensure rolling stability in the path-tracking control process and improve the adaptability of the strategy to the driving scenario. Firstly, a steering and braking cooperative control model based on the four-degree-of-freedom model and the multi-point preview model was established. Then, a path tracking controller considering roll stability was designed based on the linear quadratic theory. On this basis, a fuzzy linear quadratic controller was designed to realize the online optimization of cost function weights. Finally, the effectiveness of the control strategy was verified using co-simulation and hardware-in-loop experiments. The results show that the designed controller can effectively adjust the weight of path-tracking and stability according to the vehicle’s state. This effectively improves the vehicle’s control distribution problem.
The traditional electronic braking system (EBS) of a commercial vehicle has the problems of sluggish pressure response, large dynamic error and unsatisfactory braking effect during braking. First, a novel EBS system based on electronic pneumatic valves (EPV) module is designed, which integrated the control of each pneumatic valve. Secondly, the hardware of the EBS bottom controller and the air pressure closed-loop control are carried out. A kind of similar to PWM (SPWM) air pressure control method is proposed. By controlling the opening and closing time of the solenoid valves, the brake air pressure could be precisely regulated, and the dynamic response characteristics of the system are improved. Eventually, commercial vehicle air brake hardware in the loop (HIL) test platform based on LabVIEW and NI-PXI system is built to verify the effectiveness of the EBS dynamic response characteristics. The experimental results showed that the continuous control of EBS solenoid valves is realized by using the SPWM control method, and the fine dynamic response characteristics of EBS air pressure closed-loop control are ensured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.