Interconnection of nodes takes great challenge to the estimation of causal effect in the network. In this study, we develop a nonparametric doubly robust (NDR) estimator to identify the causal effect in the presence of general interference on network observational data. The estimator combines the strengths of doubly robust mapping and nonparametric regression. Thus, it is consistent when either the treatment or the outcome model is properly specified and is free of parametric assumptions. The asymptotic properties of the proposed estimator are also proved. We demonstrate the robustness and effectiveness of NDR by simulation studies and apply this method to investigate the impact of installation of SnCR on ambient ozone concentration of 473 power plants in America.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.