Pandemic influenza A (H1N1) 2009 (pandemic H1N1) is spreading throughout the planet. It has become the dominant strain in the southern hemisphere, where the influenza season is underway. Here, based on reported case clusters in the USA, we estimate the household secondary attack rate for pandemic H1N1 to be 27.3% (95% CI: 12.2%-50.5%). From a school outbreak, we estimate a school child infects 2.4 (95% CI: 1.8-3.2) other children within the school. We estimate the basic reproductive number, R 0 , to range from 1.3-1.7 and the generation interval to range from 2.6-3.2 days. We use a simulation model to evaluate the effectiveness of vaccination strategies in the USA for the Fall, 2009. If vaccine were available soon enough, vaccination of children, followed by adults, reaching 70% overall coverage, in addition to high risk and essential workforce groups, could mitigate a severe epidemic.Pandemic H1N1, which first emerged in Mexico in , spread worldwide, resulting in more than 130,000 laboratory-confirmed cases and 800 deaths in over 100 countries by midJuly (1). The global distribution of this novel strain prompted the World Health Organization to declare the first influenza pandemic of the 21st century in June 2009 (2). Initially, most cases were clustered in households (3-6) and schools (7) with over 50% of the reported cases in school children in the 5-18 year old age range. A recent analysis of data from the United States, Canada, the United Kingdom, and the European Union suggests case fatality ratios ranging from 0.20%-0.68% in these regions and a higher case fatality ratio in Mexico of 1.23% (95% CI 1.03%-1.47%) (8).Both pandemic and seasonal influenza cause sustained epidemics in the upper northern hemisphere (above latitude ~ 20°N) and lower southern hemisphere (below latitude ~ 20°S) during the respective late Fall to early Spring months, with epidemics in the more tropical regions (between latitudes ~ 20°S and 20°N) occurring sporadically, but sometimes corresponding to the rainy season. The last influenza pandemic was the Hong Kong A (H3N2) * To whom correspondence should be addressed. longini@scharp.org . 1957 -1958 , caused mid-Summer, 1957, outbreaks in Louisiana schools that were open in the Summer because of the need for children helping with the Spring harvest (11). However, there was no extensive community-wide spread of influenza A (H2N2) in the USA until the Fall of 1957, with the national level epidemic rising in September and peaking in October. Pandemic H1N1 will probably spread in a similar spatio-temporal pattern as previous pandemics, but accelerated due to increased air travel (12). Supporting Online MaterialEstimates of the transmissibility of pandemic H1N1are crucial to devising effective mitigation strategies. Historically, the best characterization of influenza transmissibility has been based on the household secondary attack rate. The household secondary attack rate is the probability (sometimes expressed as a percent) that an infected person in the household will infect a...
In seasonal influenza epidemics, pathogens such as respiratory syncytial virus (RSV) often cocirculate with influenza and cause influenza-like illness (ILI) in human hosts. However, it is often impractical to test for each potential pathogen or to collect specimens for each observed ILI episode, making inference about influenza transmission difficult. In the setting of infectious diseases, missing outcomes impose a particular challenge because of the dependence among individuals. We propose a Bayesian competing-risk model for multiple co-circulating pathogens for inference on transmissibility and intervention efficacies under the assumption that missingness in the biological confirmation of the pathogen is ignorable. Simulation studies indicate a reasonable performance of the proposed model even if the number of potential pathogens is misspecified. They also show that a moderate amount of missing laboratory test results has only a small impact on inference about key parameters in the setting of close contact groups. Using the proposed model, we found that a non-pharmaceutical intervention is marginally protective against transmission of influenza A in a study conducted in elementary schools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.