Protein corona presents a major obstacle to bench-to-bedside translation of targeted drug delivery systems, severely affecting targeting yields and directing unfavorable biodistribution. Corona-mediated targeting provides a new impetus for specific drug delivery by precisely manipulating interaction modes of functional plasma proteins on nano-surface. Here bio-inspired liposomes (SP-sLip) were developed by modifying liposomal surface with a short nontoxic peptide derived from Aβ 1-42 that specifically interacts with the lipid-binding domain of exchangeable apolipoproteins. SP-sLip absorb plasma apolipoproteins A1, E and J, consequently exposing receptor-binding domain of apolipoproteins to achieve brain-targeted delivery. Doxorubicin loaded SP-sLip (SP-sLip/DOX) show significant enhancement of brain distribution and anti-brain cancer effect in comparison to doxorubicin loaded plain liposomes. SP-sLip preserve functions of the absorbed human plasma ApoE, and the corona-mediated targeting strategy works in SP modified PLGA nanoparticles. The present study may pave a new avenue to facilitate clinical translation of targeted drug delivery systems.
Targeting ligands are anticipated to facilitate the precise delivery of therapeutic agents to diseased tissues; however, they may also severely affect the interaction of nanocarriers with plasma proteins. Here, we study the immunocompatibility of brain-targeted liposomes, which inversely correlates with absorbed natural IgM. Modification of long, stable positively charged peptide ligands on liposomes is inclined to absorb natural IgM, leading to rapid clearance and enhanced immunogenicity. Small peptidomimetic D8 developed by computer-aided peptide design exhibits improved immunocompatibility by attenuating natural IgM absorption. The present study highlights the effects of peptide ligands on the formed protein corona and in vivo fate of liposomes. Stable positively charged peptide ligands play double-edged roles in targeted delivery, preserving in vivo bioactivities for binding receptors and long-term unfavorable interactions with the innate immune system. The development of D8 provides insights into how to rationally design immunocompatible drug delivery systems by modulating the protein corona composition.
Retinoblastoma is one of the most severe ocular diseases, of which current chemotherapy is limited to the repetitive intravitreal injections of chemotherapeutics. Systemic drug administration is a less invasive route; however, it is also less efficient for ocular drug delivery because of the existence of blood-retinal barrier and systemic side effects. Here, a photoresponsive drug release system is reported, which is self-assembled from photocleavable trigonal small molecules, to achieve light-triggered intraocular drug accumulation. After intravenous injection of drug-loaded nanocarriers, green light can trigger the disassembly of the nanocarriers in retinal blood vessels, which leads to intraocular drug release and accumulation to suppress retinoblastoma growth. This proof-of-concept study would advance the development of light-triggered drug release systems for the intravenous treatment of eye diseases.
Photoresponsive drug release systems can enhance drug accumulation at the sites where light is applied. Nowadays, the photocleavable groups used in the systems usually require ultraviolet or blue light irradiation, which limits tissue penetration depth and is harmful to normal cells and living bodies. A one-photon upconversion-like photolysis strategy, which can cleave green light-activatable prodrugs with red light at the presence of a red light-excitable photosensitizer in organic solvents, is developed. However, both the prodrug and photosensitizer are hydrophobic and their energy transfer process is sensitive to oxygen molecules. Here, a simple strategy to address these problems by loading the two components in biocompatible and biodegradable polymeric micelles, is presented. The developed low-irradiance red light-triggered drug release system has a size around 40 nm and exhibits good stability in aqueous solutions. The micellar encapsulation protects the photolysis reaction from oxygen quenching in normoxia aqueous solutions. The therapeutic effect of the system enhanced by the redlight irradiation is demonstrated through in vitro and in vivo studies, indicating promising potential in cancer therapy. The study provides the first example and also an important reference for applying one-photon upconversion-like photolysis in biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.