To assess energy conservation and emission reduction effect on traffic and transportation at macro level more scientifically, the evaluation system based on the improved osculating value method for transportation is established. Information entropy weight is introduced to the traditional osculating value method and the numerical matrix normalization process in the osculating value method is simplified. The pollutant emission and the energy consumption is defined as negative index, and the capacity contribution and environmental governance as positive index. Based on the data from 2009 to 2014 of China's traffic and transportation industry, each index is calculated by the improved osculating value method. The result shows that the energy conservation and the emission reduction effect achieved the best in 2010 and the worst in 2014, the indicators weights vary from 0.002 to 0.332776. The improved osculating value method inherits the advantage of the traditional method that the subjective parameters do not need to be determined. In the improved model, the practical cases show that the sample differences are enlarged by the entropy weight comparing with the traditional osculating value method, the evaluation system is operable, and the evaluation results are objective and reliable.
In the field of freeway traffic safety research, there is an increasing focus in studies on how to reduce the frequency and severity of traffic crashes. Although many studies divide factors into “human-vehicle-road-environment” and other dimensions to construct models whichshowthe characteristic patterns of each factor's influence on crash severity, there is still a lack of research on the interaction effect of road and environment characteristics on the severity of a freeway traffic crash. This research aims to explore the influence of road and environmental factors on the severity of a freeway traffic crash and establish a prediction model towards freeway traffic crash severity. Firstly, the obtained historical traffic crash data variables were screened, and 11 influencing factors were summarized from the perspective of road and environment, and the related variables were discretized. Furthermore, the XGBoost (eXtreme Gradient Boosting) model was established, and the SHAP (SHapley Additive exPlanation) value was introduced to interpret the XGBoost model; the importance ranking of the influence degree of each feature towards the target variables and the visualization of the global influence of each feature towards the target variables were both obtained. Then, the Bayesian network-based freeway traffic crash severity prediction model was constructed via the selected variables and their values, and the learning and prediction accuracy of the model were verified. Finally, based on the data of the case study, the prediction model was applied to predict the crash severity considering the interaction effect of various factors in road and environment dimensions. The results show that the characteristic variables of road side protection facility type (RSP), road section type (LAN), central isolation facility (CIF), lighting condition (LIG), and crash occurrence time (TIM) have significant effects on the traffic crash prediction model; the prediction performance of the model considering the interaction of road and environment is better than that of the model considering the influence of single condition; the prediction accuracy of XGBoost-Bayesian Network Model proposed in this research can reach 89.05%. The identification and prediction of traffic crash risk is a prerequisite for safety improvement, and the model proposed and results obtained in this research can provide a theoretical basis for related departments in freeway safety management.
Traffic safety is an important part of the roadway in sustainable development. Freeway traffic crashes typically cause serious casualties and property losses, being a serious threat to public safety. Figuring out the potential correlation between various risk factors and revealing their coupling mechanisms are of effective ways to explore and identity freeway crash causes. However, the existing association rule mining algorithms still have some limitations in both efficiency and accuracy. Based on this consideration, using the freeway traffic crash data obtained from WDOT (Washington Department of Transportation), this research constructed a multi-dimensional multilevel system for traffic crash analysis. Considering the load balancing, the FP-Growth (Frequent Pattern- Growth) algorithm was optimized parallelly based on Hadoop platform, to achieve an efficient and accurate association rule mining calculation for massive amounts of traffic crash data; then, according to the results of the coupling mechanism among the crash precursors, the causes of freeway traffic crashes were identified and revealed. The results show that the parallel FPgrowth algorithm with load balancing constraints has a better operating speed than both the conventional FP-growth algorithm and parallel FP-growth algorithm towards processing big data. This improved algorithm makes full use of Hadoop cluster resources and is more suitable for large traffic crash data sets mining while retaining the original advantages of conventional association rule mining algorithm. In addition, the mining association rules model with the improvement of multi-dimensional interaction proposed in this research can catch the occurrence mechanism of freeway traffic crash with serious consequences (lower support degree probably) accurately and efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.