Highly compact, filter-free multispectral photodetectors have important applications in biological imaging, face recognition, and remote sensing. In this work, we demonstrate room-temperature wavelength-selective multipixel photodetectors based on GaAs 0.94 Sb 0.06 nanowire arrays grown by metalorganic vapor phase epitaxy, providing more than 10 light detection channels covering both visible and near-infrared ranges without using any optical filters. The nanowire array geometry-related tunable spectral photoresponse has been demonstrated both theoretically and experimentally and shown to be originated from the strong and tunable resonance modes that are supported in the GaAsSb array nanowires. High responsivity and detectivity (up to 44.9 A/W and 1.2 × 10 12 cm √Hz/W at 1 V, respectively) were obtained from the array photodetectors, enabling highresolution RGB color imaging by applying such a nanowire array based single pixel imager. The results indicate that our filter-free wavelength-selective GaAsSb nanowire array photodetectors are promising candidates for the development of future high-quality multispectral imagers.
Proteolysis targeting chimeras (PROTACs) technology has emerged as a novel therapeutic paradigm in recent years. PROTACs are heterobifunctional molecules that degrade target proteins by hijacking the ubiquitin–proteasome system. Currently, about 20–25% of all protein targets are being studied, and most works focus on their enzymatic functions. Unlike small molecules, PROTACs inhibit the whole biological function of the target protein by binding to the target protein and inducing subsequent proteasomal degradation. PROTACs compensate for limitations that transcription factors, nuclear proteins, and other scaffolding proteins are difficult to handle with traditional small-molecule inhibitors. Currently, PROTACs have successfully degraded diverse proteins, such as BTK, BRD4, AR, ER, STAT3, IRAK4, tau, etc. And ARV-110 and ARV-471 exhibited excellent efficacy in clinical II trials. However, what targets are appropriate for PROTAC technology to achieve better benefits than small-molecule inhibitors are not fully understood. And how to rationally design an efficient PROTACs and optimize it to be orally effective poses big challenges for researchers. In this review, we summarize the features of PROTAC technology, analyze the detail of general principles for designing efficient PROTACs, and discuss the typical application of PROTACs targeting different protein categories. In addition, we also introduce the progress of relevant clinical trial results of representative PROTACs and assess the challenges and limitations that PROTACs may face. Collectively, our studies provide references for further application of PROTACs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.