In view of problems with roadways with a compound roof, such as the occurrence of instability in the roof strata, ease of separation of the layer caving, difficulty of maintenance, and poor safety, we established a mechanical calculation model of a roadway with compound roof using the elastic mechanics theory, taking the stability control of a roadway with compound roof at a coal mine in Guizhou Province, China as the research background, and based on the actual characteristics of the coal seam and the roof and floor slate. Expressions of the separation layer and instability limit load of compound roof were derived, and the calculation and verification were carried out in combination with the actual conditions. By means of numerical simulation, the distribution and evolution laws of stress, displacement and plastic zone of roadways with a compound roof were studied, and the deformation characteristics and instability mechanism of roadways with a compound roof were revealed: (1) in early stage deformation of roadway, the amount is large, the speed is fast, and the scale is wide; (2) compound roofs are vulnerable to abscission and instability, the bearing capacity of the two sides is low due to softness and cracking, the shear failure of side angles and vertex angles weakens the strength of surrounding rock, and the self-bearing capacity of surrounding rock is low; (3) the bolt and anchor bear relatively large tensile force, and the support structure is easy to be broken up. On this basis, the stability control principle of a roadway with compound roof tunnel was put forward: fast and timely support; high-strength bolt strong support; improving the stability of the roof and the bearing capacity of the two sides; restraining the shear failure of the key bearing parts such as the side angles and the bottom angles, and targeted stability control technology for roadways with a compound roof was developed. The field industrial test showed that the deformation of this roadway with a compound roof was effectively controlled and the overall stability of the roadway was effectively improved. The results of this study could provide useful reference for a roadway with a compound roof under similar conditions.
Different from the traditional goaf-side entry in the mining face, a goaf-side entry driving heading mining face can greatly alleviate the problem of mining and excavation replacement tension under the high-intensity mining condition of a single-wing mine, withstanding the whole process of the fracture, rotation, and sinking of key blocks in the overlying rock layer, which is extremely difficult to maintain. Taking the roadway layout in a single-wing mining face of a coal mine in Neimenggu, China as the research background, first, the stress environment and structural stability characteristics of a goaf-side entry driving heading mining face is qualitatively analyzed with the theoretical analysis method according to five different stages. Secondly, the distribution and evolution law of stress and displacement with a goaf-side entry driving heading mining face are systematically studied during the whole process of advanced mining, excavation, and mining with the numerical simulation method, and the reasonable width of the section of the coal pillar is determined to be 6.0 m. Finally, the deformation laws of a goaf-side entry driving heading mining face are revealed with the field survey method: (1) the stage of advanced mining—the function relation between the distance of the excavation and mining face and roadway displacement is approximately the logistic function; (2) the stage of goaf-side entry driving—the function relation between roadway displacement and the driving distance basically forms the exponential function. Based on the above research, the dynamic segmentation control principle of “high-resistance support, dynamic monitoring, sectional control, consolidation coal sides, and stable roof control” and the dynamic segmentation control technology of “section combined strong support of anchor, net, cable, and beam, narrow coal pillar grouting and reinforcement in key periods, strengthening support of the roof with a single pillar π steel beam”, and industrial tests are carried out on site. The monitoring results of the underground pressure show that the deformation failure of the goaf-side entry driving heading mining face is effectively controlled with the control principle and technology, the difficult problem of mining and excavation replacement tension is alleviated with the single-wing mine, and the useful reference and reference for the engineering practice under similar conditions are provided.
A new simple mathematical method has been proposed to predict rock stress around a noncircular tunnel and the method is calibrated and validated with a numerical model. It can be found that the tunnel shapes and polar angles affect the applicable zone of the theoretical model significantly and the applicable zone of a rectangular tunnel was obtained using this method. The method can be used to predict the values of the concentrated stress, and to analyze the change rate of rock stress and back to calculate the mechanical boundary condition in the applicable zone. The results of the stress change rate indicate that the horizontal stress is negatively related to the vertical boundary load and positively related to the horizontal boundary load. The vertical stress is negatively related to the horizontal boundary load and positively related to the vertical boundary load. These findings can be used to explain the evolution of the vertical increment in stress obtained with field-based borehole stress monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.