BackgroundLong noncoding RNAs (lncRNAs) play important roles in a wide range of biological processes in mammals and plants. However, the systematic examination of lncRNAs in plants lags behind that in mammals. Recently, lncRNAs have been identified in Arabidopsis and wheat; however, no systematic screening of potential lncRNAs has been reported for the rice genome.ResultsIn this study, we perform whole transcriptome strand-specific RNA sequencing (ssRNA-seq) of samples from rice anthers, pistils, and seeds 5 days after pollination and from shoots 14 days after germination. Using these data, together with 40 available rice RNA-seq datasets, we systematically analyze rice lncRNAs and definitively identify lncRNAs that are involved in the reproductive process. The results show that rice lncRNAs have some different characteristics compared to those of Arabidopsis and mammals and are expressed in a highly tissue-specific or stage-specific manner. We further verify the functions of a set of lncRNAs that are preferentially expressed in reproductive stages and identify several lncRNAs as competing endogenous RNAs (ceRNAs), which sequester miR160 or miR164 in a type of target mimicry. More importantly, one lncRNA, XLOC_057324, is demonstrated to play a role in panicle development and fertility. We also develop a source of rice lncRNA-associated insertional mutants.ConclusionsGenome-wide screening and functional analysis enabled the identification of a set of lncRNAs that are involved in the sexual reproduction of rice. The results also provide a source of lncRNAs and associated insertional mutants in rice.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-014-0512-1) contains supplementary material, which is available to authorized users.
This report describes an unbiased method for systematically determining gene function in mammalian cells. A total of 20,704 predicted human full-length cDNAs were tested for induction of the IL-8 promoter. A number of genes, including those for cytokines, receptors, adapters, kinases, and transcription factors, were identified that induced the IL-8 promoter through known regulatory sites. Proteins that acted through a cooperative interaction between an AP-1 and an unrecognized cAMP response element (CRE)-like site were also identified. A protein, termed transducer of regulated cAMP response element-binding protein (CREB) (TORC1), was identified that activated expression through the variant CRE and consensus CRE sites. TORC1 potently induced known CREB1 target genes, bound CREB1, and activated expression through a potent transcription activation domain. A functional Drosophila TORC gene was also identified. Thus, TORCs represent a family of highly conserved CREB coactivators that may control the potency and specificity of CRE-mediated responses.IL-8 ͉ genomics ͉ high-throughput screening ͉ transducer of regulated cAMP response element-binding protein
Increasing grain yields is a major focus of crop breeders around the world. Here we report that overexpression of the rice microRNA (miRNA) OsmiR397, which is naturally highly expressed in young panicles and grains, enlarges grain size and promotes panicle branching, leading to an increase in overall grain yield of up to 25% in a field trial. To our knowledge, no previous report has shown a positive regulatory role of miRNA in the control of plant seed size and grain yield. We determined that OsmiR397 increases grain yield by downregulating its target, OsLAC, whose product is a laccase-like protein that we found to be involved in the sensitivity of plants to brassinosteroids. As miR397 is highly conserved across different species, our results suggest that manipulating miR397 may be useful for increasing grain yield not only in rice but also in other cereal crops.
SummaryPlant laccase (LAC) enzymes belong to the blue copper oxidase family and polymerize monolignols into lignin. Recent studies have established the involvement of microRNAs in this process; however, physiological functions and regulation of plant laccases remain poorly understood. Here, we show that a laccase gene, LAC4, regulated by a microRNA, miR397b, controls both lignin biosynthesis and seed yield in Arabidopsis. In transgenic plants, overexpression of miR397b (OXmiR397b) reduced lignin deposition. The secondary wall thickness of vessels and the fibres was reduced in the OXmiR397b line, and both syringyl and guaiacyl subunits are decreased, leading to weakening of vascular tissues. In contrast, overexpression of miR397b-resistant laccase mRNA results in an opposite phenotype. Plants overexpressing miR397b develop more than two inflorescence shoots and have an increased silique number and silique length, resulting in higher seed numbers. In addition, enlarged seeds and more seeds are formed in these miR397b overexpression plants. The study suggests that miR397-mediated development via regulating laccase genes might be a common mechanism in flowering plants and that the modulation of laccase by miR397 may be potential for engineering plant biomass production with less lignin.
N 6 -Methyladenosine (m 6 A) RNA methylation plays important roles during development in different species. However, knowledge of m 6 A RNA methylation in monocots remains limited. In this study, we reported that OsFIP and OsMTA2 are the components of m 6 A RNA methyltransferase complex in rice and uncovered a previously unknown function of m 6 A RNA methylation in regulation of plant sporogenesis. Importantly, OsFIP is essential for rice male gametogenesis. Knocking out of OsFIP results in early degeneration of microspores at the vacuolated pollen stage and simultaneously causes abnormal meiosis in prophase I. We further analyzed the profile of rice m 6 A modification during sporogenesis in both WT and OsFIP loss-of-function plants, and identified a rice panicle specific m 6 A modification motif “UGWAMH”. Interestingly, we found that OsFIP directly mediates the m 6 A methylation of a set of threonine protease and NTPase mRNAs and is essential for their expression and/or splicing, which in turn regulates the progress of sporogenesis. Our findings revealed for the first time that OsFIP plays an indispensable role in plant early sporogenesis. This study also provides evidence for the different functions of the m 6 A RNA methyltransferase complex between rice and Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.