Although mixed use is an emerging strategy that has been widely accepted in urban planning for promoting neighbourhood vibrancy, there is no consensus on how to quantitatively measure the mix and the effects of mixed use on neighbourhood vibrancy. Shannon entropy, the most commonly used diversity measurement in assessing mixed use, has been found to be inadequate in measuring the multifaceted, multidimensional characteristics of mixed use. And lack of data also makes it difficult to find the relationship between mixed use and neighbourhood vibrancy. However, the recent availability of new sources including mobile phone data and Point of Interest (POI) data have made it possible to develop new indices of mixed use and neighbourhood vibrancy to analyse their relationships. Taking advantage of these emerging new data sources, this study used the numbers of mobile phone users in a 24-hour period as a proxy of neighbourhood vibrancy and used POIs from a navigation database to develop a series of mixed-use indicators that can better reflect the multifaceted, multidimensional characteristics of mixed-use neighbourhoods. The Hill numbers, a unified form of diversity measurement used in ecological literature that includes richness, entropy, and the Simpson index, are used to measure the degrees of mixed use. Using such fine-grained data sets and the Hill numbers allowed us to obtain better insights into the relationship between mixed use and neighbourhood vibrancy. Four models varying in POI measurements that reflect different dimensions of mixed use were presented. The results showed that either POI density or entropy can explain approximately 1% of neighbourhood vibrancy, while POI richness contributes significantly in improving neighbourhood vibrancy. The results also revealed that the entropy has limitations as a measure for representing mixed use and demonstrated the necessity of adopting a set of more appropriate measurements for mixed use. Increasing the number of POIs has limited power to improve neighbourhood vibrancy compared with encouraging the mixing of complementary POIs. These exploratory findings may be useful for adjusting mixeduse assessments and to help guide urban planning and neighbourhood design.ARTICLE HISTORY
Summary Background Restricting human mobility is an effective strategy used to control disease spread. However, whether mobility restriction is a proportional response to control the ongoing COVID-19 pandemic is unclear. We aimed to develop a model that can quantify the potential effects of various intracity mobility restrictions on the spread of COVID-19. Methods In this modelling study, we used anonymous and aggregated mobile phone sightings data to build a susceptible–exposed–infectious–recovered transmission model for COVID-19 based on the city of Shenzhen, China. We simulated how disease spread changed when we varied the type and magnitude of mobility restrictions in different transmission scenarios, with variables such as the basic reproductive number ( R 0 ), length of infectious period, and the number of initial cases. Findings 331 COVID-19 cases distributed across the ten regions of Shenzhen were reported on Feb 7, 2020. In our basic scenario ( R 0 of 2·68), mobility reduction of 20–60% within the city had a notable effect on controlling COVID-19 spread: a flattening of the peak number of cases by 33% (95% UI 21–42) and delay to the peak number by 2 weeks with a 20% restriction, 66% (48–75) reduction and 4 week delay with a 40% restriction, and 91% (79–95) reduction and 14 week delay with a 60% restriction. The effects of mobility restriction were increased when combined with reductions of 25% or 50% in transmissibility of the virus. In specific analyses of mobility restrictions for individuals with symptomatic infections and for high-risk regions, these measures also had substantial effects on reducing the spread of COVID-19. For example, the peak of the epidemic was delayed by 2 weeks if the proportion of individuals with symptomatic infections who could move freely was maintained at 20%, and by 4 weeks if two high-risk regions were locked down. The simulation results were also affected by various transmission parameters. Interpretation Our model shows the effects of various types and magnitudes of mobility restrictions on controlling COVID-19 outbreaks at the city level in Shenzhen, China. The model could help policy makers to establish the optimal combinations of mobility restrictions during the COVID-19 pandemic, especially to assess the potential positive effects of mobility restriction on public health in view of the potential negative economic and societal effects. Funding Guangdong Medical Science Fund, and National Natural Science Foundation of China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.