In the present paper we show that it is possible to obtain the well known Pauli group P = 〈X,Y,Z | X2 = Y2 = Z2 = 1,(YZ)4 = (ZX)4 = (XY )4 = 1〉 of order 16 as an appropriate quotient group of two distinct spaces of orbits of the three dimensional sphere S3. The first of these spaces of orbits is realized via an action of the quaternion group Q8 on S3; the second one via an action of the cyclic group of order four $\mathbb {Z}(4)$
ℤ
(
4
)
on S3. We deduce a result of decomposition of P of topological nature and then we find, in connection with the theory of pseudo-fermions, a possible physical interpretation of this decomposition.
We show that locally compact abelian p-groups can be embedded in the first Hawaiian group on a compact path connected subspace of the Euclidean space of dimension four. This result gives a new geometric interpretation for the classification of locally compact abelian groups which are rich in commuting closed subgroups. It is then possible to introduce the idea of an algebraic topology for topologically modular locally compact groups via the geometry of the Hawaiian earring. Among other things, we find applications for locally compact groups which are just noncompact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.