Luminescent nanothermometers have shown competitive superiority for contactless and noninvasive temperature probing especially at the nanoscale. Herein, we report the inherently Eu /Eu codoped Sc O nanoparticles synthesized via a one-step and controllable thermolysis reaction where Eu is in-situ reduced to Eu by oleylamine. The stable luminescence emission of Eu as internal standard and the sensitive response of Eu emission to temperature as probe comprise a perfect ratiometric nanothermometer with wide-range temperature probing (77-267 K), high repeatability (>99.94%), and high relative sensitivity (3.06% K at 267 K). The in situ reduction of Eu to Eu ensures both uniform distribution in the crystal lattice and simultaneous response upon light excitation of Eu /Eu . To widen this concept, Tb is codoped as additional internal reference for tunable temperature probing range.
Although TRPV1 channels represent a key player of noxious heat sensation, the precise mechanisms for thermal hyperalgesia remain unknown. We report here that conditional knockout of deSUMOylation enzyme, SENP1, in mouse dorsal root ganglion (DRG) neurons exacerbated thermal hyperalgesia in both carrageenan- and Complete Freund’s adjuvant-induced inflammation models. TRPV1 is SUMOylated at a C-terminal Lys residue (K822), which specifically enhances the channel sensitivity to stimulation by heat, but not capsaicin, protons or voltage. TRPV1 SUMOylation is decreased by SENP1 but upregulated upon peripheral inflammation. More importantly, the reduced ability of TRPV1 knockout mice to develop inflammatory thermal hyperalgesia was rescued by viral infection of lumbar 3/4 DRG neurons of wild-type TRPV1, but not its SUMOylation-deficient mutant, K822R. These data suggest that TRPV1 SUMOylation is essential for the development of inflammatory thermal hyperalgesia, through a mechanism that involves sensitization of the channel response specifically to thermal stimulation.
Fe3O4 is one of the promising anode materials in Li-ion batteries and a potential alternative to graphite due to the high specific capacity, natural abundance, environmental benignity, non-flammability, and better...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.