BackgroundUrethral reconstruction is one of the great surgical challenges for urologists. A cell-based tissue-engineered urethra may be an alternative for patients who have complicated long strictures and need urethral reconstruction. Here, we demonstrated the feasibility of using autologous urine-derived stem cells (USCs) seeded on small intestinal submucosa (SIS) to repair a urethral defect in a rabbit model.MethodsAutologous USCs were obtained and characterized, and their capacity to differentiate into urothelial cells (UCs) and smooth muscle cells (SMCs) was tested. Then, USCs were labeled with PKH67, seeded on SIS, and transplanted to repair a urethral defect. The urethral defect model was surgically established in New Zealand white male rabbits. A ventral urethral gap was created, and the urethral mucosa was completely removed, with a mean rabbit penile urethra length of 2 cm. The urethral mucosal defect was repaired with a SIS scaffold (control group: SIS with no USCs; experimental group: autologous USC-seeded SIS; n = 12 for each group). A series of tests, including a retrograde urethrogram, histological analysis, and immunofluorescence, was undertaken 2, 3, 4, and 12 weeks after the operation to evaluate the effect of the autologous USCs on urethral reconstruction.ResultsAutologous USCs could be easily collected and induced to differentiate into UCs and SMCs. In addition, the urethral caliber, speed of urothelial regeneration, content of smooth muscle, and vessel density were significantly improved in the group with autologous USC-seeded SIS. Moreover, inflammatory cell infiltration and fibrosis were found in the control group with only SIS, but not in the experimental autologous USC-seeded SIS group. Furthermore, immunofluorescence staining demonstrated that the transplanted USCs differentiated into UCs and SMCs in vivo.ConclusionsAutologous USCs can be used as an alternative cell source for cell-based tissue engineering for urethral reconstruction.
Di-(2-ethylhexyl) phthalate (DEHP) is an environmental endocrine disruptor widely used in China that is harmful to the male reproductive system. Many studies have shown that DEHP causes testicular toxicity through oxidative stress, but the specific mechanism is unknown. Because the Notch pathway is a key mechanism for regulating cell growth and proliferation, we investigated whether Notch is involved in DEHP-induced testicular toxicity and whether vitamins E and C could rescue testicular impairment in Sprague-Dawley (SD) rats. Compared with the control group, we found that DEHP exposure induced testicular toxicity through oxidative stress injury, and it decreased the testosterone level (P < .01) and upregulated nuclear factor-erythroid 2 related factor (Nrf2) expression (P < .01). Therefore, because oxidative stress might be the initiating factor of DEHP-induced testicular toxicity, treatment with the antioxidant vitamins E and C activated the Notch1 signaling pathway in the testis and in Leydig cells. Treatment with vitamins E and C normalized the oxidative stress state after DEHP exposure and restored testicular development to be similar to the control group. In summary, antioxidant vitamins E and C may be used to treat DEHP-induced testicular toxicity.
Vitamin E cotreatment showed protective effects against DEHP-induced testicular toxicity, including reproductive malformations, testicular weight, apoptosis and histology, and the mechanisms maybe associated with PPARs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.