The orientation and adsorption site for C(60) molecules on Au(111) has been studied using low temperature scanning tunneling microscopy. A complex orientational ordering has been observed for molecules inside the "in-phase" (R0°) domain. A 7-molecule cluster consisting a central molecule sitting atop of a gold atom and 6 tilted surrounding molecules is identified as the structural motif. The 2√3 × 2√3-R30° phase consists of molecules bonding to a gold atomic vacancies with a preferred azimuthal orientation. The quasi-periodic R14° phase is composed of groups of similarly oriented molecules with the groups organized into a 4√3 × 4√3-R30° like super-lattice unit cell.
We report the assembly of magic number (C60)m-(Au)n complexes on the Au(111) surface. These complexes have a unique structure consisting of a single atomic layer Au island wrapped by a self-selected number (seven, ten, or twelve) of C(60) molecules. The smallest structure consisting of 7 C60 molecules and 19 Au atoms, stable up to 400 K, has a preferred orientation on the surface. We propose a globalized metal-organic coordination mechanism for the stability of the (C(60))(m)-(Au)n complexes.
In the blooming field of on-surface synthesis, molecular building blocks are designed to self-assemble and covalently couple directly on a well-defined surface, thus allowing the exploration of unusual reaction pathways and the production of specific compounds in mild conditions. Here we report on the creation of functionalized organic nanoribbons on the Ag(110) surface. C–H bond activation and homo-coupling of the precursors is achieved upon thermal activation. The anisotropic substrate acts as an efficient template fostering the alignment of the nanoribbons, up to the full monolayer regime. The length of the nanoribbons can be sequentially increased by controlling the annealing temperature, from dimers to a maximum length of about 10 nm, limited by epitaxial stress. The different structures are characterized by room-temperature scanning tunnelling microscopy. Distinct signatures of the covalent coupling are measured with high-resolution electron energy loss spectroscopy, as supported by density functional theory calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.