Immune-mediated skin diseases have a high prevalence and seriously affect patients’ quality of life. Gold compounds have been considered promising therapeutic agents in dermatology, but the high incidence of adverse reactions have limited their clinical application. There is a great need to develop more effective and less toxic gold-based drugs. Gold nanoclusters fabricated by using peptides (pep-AuNCs) have appeared as potential biomedical nanomaterials because of their excellent biocompatibility, ease of fabrication and unique physicochemical properties. Glutathione (GSH) is an endogenous tripeptide and has been used for lightening the skin color. Therefore, we fabricated a well-defined gold nanocluster with GSH as an example to explore the immunomodulatory effect of AuNCs on a TNF-α-treated human keratinocyte cell line (HaCaT) in vitro, the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced irritant contact dermatitis (ICD) model and the oxazolone (OXA)-induced psoriatic model in vivo. The results indicated that topically applied AuNCs successfully attenuated the severity of ICD and psoriasis-like lesions. In vitro and in vivo, AuNCs effectively inhibited the abnormal activation of the NF-κB pathway and the consequent overexpression of proinflammatory cytokines in keratinocytes. In particular, the transactivation of IL-17A, the most important cytokine in psoriasis pathology, was effectively inhibited by AuNCs treatment. In addition, AuNCs did not show any obvious cytotoxicity in HaCaT cells at doses even up to 100 µM and did not induce any irritation in the healthy skin and major organs, which indicated their favorable biosafety. These results indicate that biocompatible pep-AuNCs might be a promising gold-based nanomedicine for the treatment of inflammatory skin diseases.
Activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL) is the most aggressive form of DLBCL, with a significantly inferior prognosis due to resistance to the standard R-CHOP immunochemotherapy. Survival of ABC-DLBCL cells addicted to the constitutive activations of both canonical and noncanonical NF-κB signaling makes them attractive therapeutic targets. However, a pharmaceutical approach simultaneously targeting the canonical and noncanonical NF-κB pathway in the ABC-DLBCL cell is still lacking. Peptide-conjugated gold nanoclusters (AuNCs) have emerged unique intrinsic biomedical activities and possess a great potential in cancer theranostics. Here, we demonstrated a Au 25 nanocluster conjugated by cell-penetrating peptides that can selectively repress the growth of ABC-DLBCL cells by inducing efficient apoptosis, more efficiently than glutathione (GSH)-conjugated AuNCs. The mechanism study showed that the cell-penetrating peptides enhanced the cellular internalization efficiency of AuNCs, and the selective repression in ABC-DLBCL cells is due to the inhibition of inherent constitutive canonical and noncanonical NF-κB activities by AuNCs. Several NF-κB target genes involved in chemotherapy resistance in ABC-DLBCL cells, including anti-apoptotic Bcl-2 family members and DNA damage repair proteins, were effectively down-regulated by the AuNC. The emerged novel activity of AuNCs in targeting both arms of NF-κB signaling in ABC-DLBCL cells may provide a promising candidate and a new insight into the rational design of peptide-conjugated Au nanomedicine for molecular targeting treatment of refractory lymphomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.