Converting CO2 into chemical fuels with a photocatalyst and sunlight is an appealing approach to address climate deterioration and energy crisis. Metal complexes are superb candidates for CO2 reduction due to their tunable catalytic sites with high activity. The coupling of metal complexes with organic photosensitizers is regarded as a common strategy for establishing photocatalytic systems for visible-light-driven CO2 reduction. While most of the organic photosensitizers generally contain precious metals and are available through onerous synthetic routes, their large-scale application in the photocatalysis is limited. Halide perovskite nanocrystals (NCs) have been considered as one of the most promising light-harvesting materials to replace the organic photosensitizers due to their tunable light absorption range, low cost, abundant surface sites, and high molar extinction coefficient. Herein, we demonstrate a facile strategy to immobilize [Ni(terpy)2]2+ (Ni(tpy)) on inorganic ligand-capped CsPbBr3 NCs and to apply this hybrid as a catalyst for visible-light-driven CO2 reduction. In this hybrid photocatalytic system, the Ni(tpy) can provide specific catalytic sites and serve as electron sinks to suppress electron–hole recombination in the CsPbBr3 NCs. The CsPbBr3-Ni(tpy) catalytic system achieves a high yield (1724 μmol/g) in the reduction of CO2 to CO/CH4, which is approximately 26-fold higher than that achieved with the pristine CsPbBr3 NCs. This work has developed a method for enhancing the performance of photocatalytic CO2 reduction by immobilizing metal complexes on perovskite NCs. The methodology we present here provides a new platform for utilizing halide perovskite NCs for photocatalytic applications.
To avoid the energy‐consuming step of direct N≡N bond cleavage, photocatalytic N2 fixation undergoing the associative pathways has been developed for mild‐condition operation. However, it is a fundamental yet challenging task to gain comprehensive understanding on how the associative pathways (i.e., alternating vs. distal) are influenced and altered by the fine structure of catalysts, which eventually holds the key to significantly promote the practical implementation. Herein, we introduce Fe dopants into TiO2 nanofibers to stabilize oxygen vacancies and simultaneously tune their local electronic structure. The combination of in situ characterizations with first‐principles simulations reveals that the modulation of local electronic structure by Fe dopants turns the hydrogenation of N2 from associative alternating pathway to associative distal pathway. This work provides fresh hints for rationally controlling the reaction pathways toward efficient photocatalytic nitrogen fixation.
Harvesting solar energy for catalytic conversion of CO 2 into valuable chemical fuels/feedstocks is an attractive yet challenging strategy to realize a sustainable carbon-cycle utilization. Homogeneous catalysts typically exhibit higher activity and selectivity as compared with heterogeneous counterparts, benefiting from their atomically dispersed catalytic sites and versatile coordination structures. However, it is still a "black box" how the coordination and electronic structures of catalysts dynamically evolve during the reaction, forming the bottleneck for understanding their reaction pathways. Herein, we demonstrate to track the mechanistic pathway of photocatalytic CO 2 reduction using a terpyridine nickel(II) complex as a catalyst model. Integrated with a typical homogeneous photosensitizer, the catalytic system offers a high selectivity of 99% for CO 2 -to-CO conversion with turnover number and turnover frequency as high as 2.36 × 10 7 and 385.6 s −1 , respectively. We employ operando and time-resolved X-ray absorption spectroscopy, in combination with other in situ spectroscopic techniques and theoretical computations, to track the intermediate species of Ni catalyst in the photocatalytic CO 2 reduction reaction for the first time. Taken together with the charge dynamics resolved by optical transient absorption spectroscopy, the investigation elucidates the full mechanistic reaction pathway including some key factors that have been often overlooked. This work opens the "black box" for CO 2 reduction in the system of homogeneous catalysts and provides key information for developing efficient catalysts toward artificial photosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.