Patients with DICER1 predisposition syndrome have an increased risk to develop pleuropulmonary blastoma, cystic nephroma, embryonal rhabdomyosarcoma, and several other rare tumor entities. In this study, we identified 22 primary intracranial sarcomas, including 18 in pediatric patients, with a distinct methylation signature detected by array-based DNA-methylation profiling. In addition, two uterine rhabdomyosarcomas sharing identical features were identified. Gene panel sequencing of the 22 intracranial sarcomas revealed the almost unifying feature of DICER1 hotspot mutations (21/22; 95%) and a high frequency of co-occurring TP53 mutations (12/22; 55%). In addition, 17/22 (77%) sarcomas exhibited alterations in the mitogen-activated protein kinase pathway, most frequently affecting the mutational hotspots of KRAS (8/22; 36%) and mutations or deletions of NF1 (7/22; 32%), followed by mutations of FGFR4 (2/22; 9%), NRAS (2/22; 9%), and amplification of EGFR (1/22; 5%). A germline DICER1 mutation was detected in two of five cases with constitutional DNA available. Notably, none of the patients showed evidence of a cancer-related syndrome at the time of diagnosis. In contrast to the genetic findings, the morphological features of these tumors were less distinctive, although rhabdomyoblasts or rhabdomyoblast-like cells could retrospectively be detected in all cases. The identified combination of genetic events indicates a relationship between the intracranial tumors analyzed and DICER1 predisposition syndrome-associated sarcomas such as embryonal rhabdomyosarcoma or the recently described group of anaplastic sarcomas of the kidney. However, the intracranial tumors in our series were initially interpreted to represent various tumor types, but rhabdomyosarcoma was not among the typical differential diagnoses considered. Given the rarity of intracranial sarcomas, this molecularly clearly defined group comprises a considerable fraction thereof. We therefore propose the designation "spindle cell sarcoma with rhabdomyosarcoma-like features, DICER1 mutant" for this intriguing group.
Extraventricular neurocytoma (EVN) is a rare primary brain tumor occurring in brain parenchyma outside the ventricular system. Histopathological characteristics resemble those of central neurocytoma but exhibit a wider morphologic spectrum. Accurate diagnosis of these histologically heterogeneous tumors is often challenging because of the overlapping morphological features and the lack of defining molecular markers. Here, we explored the molecular landscape of 40 tumors diagnosed histologically as EVN by investigating copy number profiles and DNA methylation array data. DNA methylation profiles were compared with those of relevant differential diagnoses of EVN and with a broader spectrum of diverse brain tumor entities. Based on this, our tumor cohort segregated into different groups. While a large fraction (n = 22) formed a separate epigenetic group clearly distinct from established DNA methylation profiles of other entities, a subset (n = 14) of histologically diagnosed EVN grouped with clusters of other defined entities. Three cases formed a small group close to but separated from the epigenetically distinct EVN cases, and one sample clustered with non-neoplastic brain tissue. Four additional samples originally diagnosed otherwise were found to molecularly resemble EVN. Thus, our results highlight a distinct DNA methylation pattern for the majority of tumors diagnosed as EVN, but also indicate that approximately one third of morphological diagnoses of EVN epigenetically correspond to other brain tumor entities. Copy number analysis and confirmation through RNA sequencing revealed FGFR1-TACC1 fusion as a distinctive, recurrent feature within the EVN methylation group (60%), in addition to a small number of other FGFR rearrangements (13%). In conclusion, our data demonstrate a specific epigenetic signature of EVN suitable for characterization of these tumors as a molecularly distinct entity, and reveal a high frequency of potentially druggable FGFR pathway activation in this tumor group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.