Leaf Area Index (LAI) is a key variable that bridges remote sensing observations to the quantification of agroecosystem processes. In this study, we assessed the universality of the relationships between crop LAI and remotely sensed Vegetation Indices (VIs). We first compiled a global dataset of 1459 in situ quality-controlled crop LAI measurements and collected Landsat satellite images to derive five different VIs including Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), two versions of the Enhanced Vegetation Index (EVI and EVI2), and Green Chlorophyll Index (CIGreen). Based on this dataset, we developed global LAI-VI relationships for each crop type and VI using symbolic regression and Theil-Sen (TS) robust estimator. Results suggest that the global LAI-VI relationships are statistically significant, crop-specific, and mostly non-linear. These relationships explain more than half of the total variance in ground LAI observations (R2 >0.5), and provide LAI estimates with RMSE below 1.2 m2/m2. Among the five VIs, EVI/EVI2 are the most effective, and the crop-specific LAI-EVI and LAI-EVI2 relationships constructed by TS, are robust when tested by three independent validation datasets of varied spatial scales. While the heterogeneity of agricultural landscapes leads to a diverse set of local LAI-VI relationships, the relationships provided here represent global universality on an average basis, allowing the generation of large-scale spatial-explicit LAI maps. This study contributes to the operationalization of large-area crop modeling and, by extension, has relevance to both fundamental and applied agroecosystem research.
The lack of consistent, accurate information on evapotranspiration (ET) and consumptive use of water by irrigated agriculture is one of the most important data gaps for water managers in the western United States (U.S.) and other arid agricultural regions globally. The ability to easily access information on ET is central to improving water budgets across the West, advancing the use of data‐driven irrigation management strategies, and expanding incentive‐driven conservation programs. Recent advances in remote sensing of ET have led to the development of multiple approaches for field‐scale ET mapping that have been used for local and regional water resource management applications by U.S. state and federal agencies. The OpenET project is a community‐driven effort that is building upon these advances to develop an operational system for generating and distributing ET data at a field scale using an ensemble of six well‐established satellite‐based approaches for mapping ET. Key objectives of OpenET include: Increasing access to remotely sensed ET data through a web‐based data explorer and data services; supporting the use of ET data for a range of water resource management applications; and development of use cases and training resources for agricultural producers and water resource managers. Here we describe the OpenET framework, including the models used in the ensemble, the satellite, meteorological, and ancillary data inputs to the system, and the OpenET data visualization and access tools. We also summarize an extensive intercomparison and accuracy assessment conducted using ground measurements of ET from 139 flux tower sites instrumented with open path eddy covariance systems. Results calculated for 24 cropland sites from Phase I of the intercomparison and accuracy assessment demonstrate strong agreement between the satellite‐driven ET models and the flux tower ET data. For the six models that have been evaluated to date (ALEXI/DisALEXI, eeMETRIC, geeSEBAL, PT‐JPL, SIMS, and SSEBop) and the ensemble mean, the weighted average mean absolute error (MAE) values across all sites range from 13.6 to 21.6 mm/month at a monthly timestep, and 0.74 to 1.07 mm/day at a daily timestep. At seasonal time scales, for all but one of the models the weighted mean total ET is within ±8% of both the ensemble mean and the weighted mean total ET calculated from the flux tower data. Overall, the ensemble mean performs as well as any individual model across nearly all accuracy statistics for croplands, though some individual models may perform better for specific sites and regions. We conclude with three brief use cases to illustrate current applications and benefits of increased access to ET data, and discuss key lessons learned from the development of OpenET.
Crop yield estimates over large areas are conventionally made using weather observations, but a comprehensive understanding of the effects of various environmental indicators, observation frequency, and the choice of prediction algorithm remains elusive. Here we present a thorough assessment of county-level maize yield prediction in U.S. Midwest using six statistical/machine learning algorithms (Lasso, Support Vector Regressor, Random Forest, XGBoost, Long-short term memory (LSTM), and Convolutional Neural Network (CNN)) and an extensive set of environmental variables derived from satellite observations, weather data, land surface model results, soil maps, and crop progress reports. Results show that seasonal crop yield forecasting benefits from both more advanced algorithms and a large composite of information associated with crop canopy, environmental stress, phenology, and soil properties (i.e. hundreds of features). The XGBoost algorithm outperforms other algorithms both in accuracy and stability, while deep neural networks such as LSTM and CNN are not advantageous. The compositing interval (8-day, 16-day or monthly) of time series variable does not have significant effects on the prediction. Combining the best algorithm and inputs improves the prediction accuracy by 5% when compared to a baseline statistical model (Lasso) using only basic climatic and satellite observations. Reasonable county-level yield foresting is achievable from early June, almost four months prior to harvest. At the national level, early-season (June and July) prediction from the best model outperforms that of the United States Department of Agriculture (USDA) World Agricultural Supply and Demand Estimates (WASDE). This study provides insights into practical crop yield forecasting and the understanding of yield response to climatic and environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.