The fundamental understanding of molecular quantum electrodynamics via the strong light–matter interactions between a nanophotonic cavity and quantum emitters opens various applications in quantum biology, biophysics, and chemistry. However, considerable obstacles to obtaining a clear understanding of coupling mechanisms via reliable experimental quantifications remain to be resolved before this field can truly blossom toward practical applications in quantitative life science and photochemistry. Here, we provide recent advancements of state-of-the-art demonstrations in plexcitonic and vibro-polaritonic strong couplings and their applications. We highlight recent studies on various strong coupling systems for altering chemical reaction landscapes. Then, we discuss reports dedicated to the utilization of strong coupling methods for biomolecular sensing, protein functioning studies, and the generation of hybrid light–matter states inside living cells. The strong coupling regime provides a tool for investigating and altering coherent quantum processes in natural biological processes. We also provide an overview of new findings and future avenues of quantum biology and biochemistry.
Obtaining single–molecular–level fingerprints of biomolecules and electron–transfer dynamic imaging in living cells are critically demanded in postgenomic life sciences and medicine. However, the possible solution called plasmonic resonance energy transfer (PRET) spectroscopy remains challenging due to the fixed scattering spectrum of a plasmonic nanoparticle and limited multiplexing. Here, multiplexed metasurfaces‐driven PRET hyperspectral imaging, to probe biological light–matter interactions, is reported. Pixelated metasurfaces with engineered scattering spectra are first designed over the entire visible range by the precision nanoengineering of gap plasmon and grating effects of metasurface clusters. Pixelated metasurfaces are created and their full dark‐field coloration is optically characterized with visible color palettes and high‐resolution color printings of the art pieces. Furthermore, three different biomolecules (i.e., chlorophyll a, chlorophyll b, and cytochrome c) are applied on metasurfaces for color palettes to obtain selective molecular fingerprint imaging due to the unique biological light–matter interactions with application‐specific biomedical metasurfaces. This metasurface‐driven PRET hyperspectral imaging will open up a new path for multiplexed real‐time molecular sensing and imaging methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.