Yellow seed is a desirable trait with great potential for improving seed quality in Brassica crops. Unfortunately, no natural or induced yellow seed germplasms have been found in Brassica napus, an important oil crop, which likely reflects its genome complexity and the difficulty of the simultaneous random mutagenesis of multiple gene copies with functional redundancy. Here, we demonstrate the first application of CRISPR/Cas9 for creating yellow‐seeded mutants in rapeseed. The targeted mutations of the BnTT8 gene were stably transmitted to successive generations, and a range of homozygous mutants with loss‐of‐function alleles of the target genes were obtained for phenotyping. The yellow‐seeded phenotype could be recovered only in targeted mutants of both BnTT8 functional copies, indicating that the redundant roles of BnA09.TT8 and BnC09.TT8b are vital for seed colour. The BnTT8 double mutants produced seeds with elevated seed oil and protein content and altered fatty acid (FA) composition without any serious defects in the yield‐related traits, making it a valuable resource for rapeseed breeding programmes. Chemical staining and histological analysis showed that the targeted mutations of BnTT8 completely blocked the proanthocyanidin (PA)‐specific deposition in the seed coat. Further, transcriptomic profiling revealed that the targeted mutations of BnTT8 resulted in the broad suppression of phenylpropanoid/flavonoid biosynthesis genes, which indicated a much more complex molecular mechanism underlying seed colour formation in rapeseed than in Arabidopsis and other Brassica species. In addition, gene expression analysis revealed the possible mechanism through which BnTT8 altered the oil content and fatty acid composition in seeds.
Key message A major QTL controlling ovule abortion and SN was ne-mapped to a 80.1-kb region on A8 in rapeseed, and BnaA08g07940D and BnaA08g07950D are the most likely candidate genes.Abstact The seed number per silique (SN), an important yield determining trait of rapeseed, is the nal consequence of a complex developmental process including ovule initiation and the subsequent ovule/seed development. To elucidate the genetic mechanism regulating the natural variation of SN and its related components, quantitative trait locus (QTL) mapping was conducted using a doubled haploid (DH) population derived from the cross between C4-146 and C4-58B, which showed significant differences in SN and aborted ovule number (AON), but no obvious differences in ovule number (ON). QTL analysis identified 19 consensus QTLs for six SN-related traits across three environments. A novel QTL on chromosome A8, un.A8, which pleiotropically controls all these traits except for ON, was stably detected across the three environments.This QTL explained more than 50% of the SN, AON and percentage of aborted ovule (PAO) variations as well as a moderate contribution on silique length (SL) and thousand seed weight (TSW). The C4-146 allele at the locus increases SN and SL but decreases AON, PAO and TSW. Further ne mapping narrowed down this locus into a 80.1-kb interval anked by markers BM1668 and BM1672, and six predicted genes were annotated in the delimited region. Expression analyses and DNA sequencing showed that two homologs of Arabidopsis photosystem I subunit F (BnaA08g07940D) and zinc transporter 10 precursor (BnaA08g07950D) were the most promising candidate genes underlying this locus. These results provide a solid basis for cloning un.A8 to reduce the ovule abortion and increase SN in the yield improvement of rapeseed.
As an important oil crop, rapeseed contributes to the food security of the world. In recent years, agronomists have cultivated many new varieties, which has increased human nutritional needs. Variety recognition is of great importance for yield improvement and quality breeding. In view of the low efficiency and damage of traditional methods, in this paper, we develop a noninvasive model for the recognition of rapeseed varieties based on hyperspectral feature fusion. Three types of hyperspectral image features, namely, the multifractal feature, color characteristics, and trilateral parameters, are fused together to identify 11 rapeseed species. An optimal feature is selected using a simple rule, and then the three kinds of features are fused. The support vector machine kernel method is employed as a classifier. The average recognition rate reaches 96.35% and 93.71% for distinguishing two species and 11 species, respectively. The abundance test model demonstrates that our model possesses robustness. The high recognition rate is almost independent of the number of modeling samples and classifiers. This result can provide some practical experience and method guidance for the rapid recognition of rapeseed varieties.
Key message A major QTL controlling ovule abortion and SN was fine-mapped to a 80.1-kb region on A8 in rapeseed, and BnaA08g07940D and BnaA08g07950D are the most likely candidate genes.Abstact The seed number per silique (SN), an important yield determining trait of rapeseed, is the final consequence of a complex developmental process including ovule initiation and the subsequent ovule/seed development. To elucidate the genetic mechanism regulating the natural variation of SN and its related components, quantitative trait locus (QTL) mapping was conducted using a doubled haploid (DH) population derived from the cross between C4-146 and C4-58B, which showed significant differences in SN and aborted ovule number (AON), but no obvious differences in ovule number (ON). QTL analysis identified 19 consensus QTLs for six SN-related traits across three environments. A novel QTL on chromosome A8, un.A8, which pleiotropically controls all these traits except for ON, was stably detected across the three environments.This QTL explained more than 50% of the SN, AON and percentage of aborted ovule (PAO) variations as well as a moderate contribution on silique length (SL) and thousand seed weight (TSW). The C4-146 allele at the locus increases SN and SL but decreases AON, PAO and TSW. Further fine mapping narrowed down this locus into a 80.1-kb interval flanked by markers BM1668 and BM1672, and six predicted genes were annotated in the delimited region. Expression analyses and DNA sequencing showed that two homologs of Arabidopsis photosystem I subunit F (BnaA08g07940D) and zinc transporter 10 precursor (BnaA08g07950D) were the most promising candidate genes underlying this locus. These results provide a solid basis for cloning un.A8 to reduce the ovule abortion and increase SN in the yield improvement of rapeseed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.