We propose an end-to-end DNN model for cell nuclei and non-nuclei classification of histopathology images. It demonstrates that the proposed method can achieve promising performance in cell nuclei classification, and the proposed method is suitable for the cell nuclei classification task.
Classifying breast cancer histopathological images automatically is an important task in computer assisted pathology analysis. However, extracting informative and non-redundant features for histopathological image classification is challenging due to the appearance variability caused by the heterogeneity of the disease, the tissue preparation, and staining processes. In this paper, we propose a new feature extractor, called deep manifold preserving autoencoder, to learn discriminative features from unlabeled data. Then, we integrate the proposed feature extractor with a softmax classifier to classify breast cancer histopathology images. Specifically, it learns hierarchal features from unlabeled image patches by minimizing the distance between its input and output, and simultaneously preserving the geometric structure of the whole input data set. After the unsupervised training, we connect the encoder layers of the trained deep manifold preserving autoencoder with a softmax classifier to construct a cascade model and fine-tune this deep neural network with labeled training data. The proposed method learns discriminative features by preserving the structure of the input datasets from the manifold learning view and minimizing reconstruction error from the deep learning view from a large amount of unlabeled data. Extensive experiments on the public breast cancer dataset (BreaKHis) demonstrate the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.