Chitin is a fungal microbe-associated molecular pattern recognized in Arabidopsis by a lysin motif receptor kinase (LYK), AtCERK1. Previous research suggested that AtCERK1 is the major chitin receptor and mediates chitin-induced signaling through homodimerization and phosphorylation. However, the reported chitin binding affinity of AtCERK1 is quite low, suggesting another receptor with high chitin binding affinity might be present. Here, we propose that AtLYK5 is the primary chitin receptor in Arabidopsis. Mutations in AtLYK5 resulted in a significant reduction in chitin response. However, AtLYK5 shares overlapping function with AtLYK4 and, therefore, Atlyk4/Atlyk5-2 double mutants show a complete loss of chitin response. AtLYK5 interacts with AtCERK1 in a chitin-dependent manner. Chitin binding to AtLYK5 is indispensable for chitin-induced AtCERK1 phosphorylation. AtLYK5 binds chitin at a much higher affinity than AtCERK1. The data suggest that AtLYK5 is the primary receptor for chitin, forming a chitin inducible complex with AtCERK1 to induce plant immunity.DOI: http://dx.doi.org/10.7554/eLife.03766.001
Extracellular adenosine 5'-triphosphate (ATP) is an essential signaling molecule that is perceived in mammals by plasma membrane P2-type purinoceptors. Similar ATP receptors do not exist in plants, although extracellular ATP has been shown to play critical roles in plant growth, development, and stress responses. Here, we identify an ATP-insensitive Arabidopsis mutant, dorn1 (Does not Respond to Nucleotides 1), defective in lectin receptor kinase I.9 (Arabidopsis Information Resource accession code At5g60300). DORN1 binds ATP with high affinity (dissociation constant of 45.7 ± 3.1 nanomolar) and is required for ATP-induced calcium response, mitogen-activated protein kinase activation, and gene expression. Ectopic expression of DORN1 increased the plant response to physical wounding. We propose that DORN1 is essential for perception of extracellular ATP and likely plays a variety of roles in plant stress resistance.
In addition to acting as a cellular energy source, ATP can also act as a damage-associated molecular pattern in both animals and plants. Stomata are leaf pores that control gas exchange and, therefore, impact critical functions such as photosynthesis, drought tolerance, and also are the preferred entry point for pathogens. Here we show the addition of ATP leads to the rapid closure of leaf stomata and enhanced resistance to the bacterial pathogen Psuedomonas syringae. This response is mediated by ATP recognition by the receptor DORN1, followed by direct phosphorylation of the NADPH oxidase RBOHD, resulting in elevated production of reactive oxygen species and stomatal closure. Mutation of DORN1 phosphorylation sites on RBOHD eliminates the ability of ATP to induce stomatal closure. The data implicate purinergic signaling via DORN1 in the control of stomatal aperture with important implications for the control of plant photosynthesis, water homeostasis, pathogen resistance, and ultimately yield.
Virtually since the discovery of nitrogen-fixing Rhizobium-legume symbioses, researchers have dreamed of transferring this capability into nonlegume crop species (for example, corn). In general, nonlegumes were assumed to lack the ability to respond to the rhizobial lipo-chitin Nod factors, which are the essential signal molecules that trigger legume nodulation. However, our data indicate that Arabidopsis thaliana plants, as well as other nonlegumes, recognize the rhizobial Nod factor via a mechanism that results in strong suppression of microbe-associated molecular pattern (MAMP)-triggered immunity. The mechanism of action leads to reduced levels of pattern-recognition receptors on the plasma membrane involved in MAMP recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.