Thermomechanical pulp (TMP) is used for fiber production in binderless boards industries. Milled wood lignin (MWL) and enzymatic mild acidolysis lignin (EMAL) isolated from raw material and from binderless boards (BB) were comparatively analyzed to investigate the effects of chemical changes on the bonding performance in BB. The results showed that acid-insoluble lignin of the BB were increased during the sodium silicate solution pretreatment after hot-pressing. The lignin fractions obtained were characterized by gel permeation chromatography (GPC), Fourier transform infrared (FT-IR) spectroscopy, and 1 H-13 C correlation heteronuclear single-quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy. Results showed that 31.1% of EMAL (based on Klason lignin) with low molecular weight (M w =1630 g/mol) was isolated from the BB. The increased total phenolic OH groups (3.97 mmol/g) of EMAL from sodium silicate solution pretreated BB indicated that there was degradation of lignin and cleavage of lignincarbohydrate linkages during hot-pressing. In addition, the content of β-O-4' aryl ether linkages of EMAL from the BB increased to 69.2%, which was higher than that of the untreated sample (60.1%). It was found that S units (syringyl-like lignin structures) were preferentially condensed by hot pressing over G (guaiacyl-like lignin structures) units, and the S/G ratio increased after the hot-pressing process.
Metal tritide is widely used for research, purification, compression, and storage of tritium. The current understanding of metal tritide and its radiation dosimetry for internal exposure is limited, and ICRP publications do not provide the tritium dosimetry for hafnium tritide. The current radiation protection guidelines for metal tritide particles (including hafnium tritide) are based on the assumption that their biological behavior is similar to tritiated water, which is completely absorbed by the body. However, the solubility of metal tritide particles depends on the chemical form of the material. The biological half-live of hafnium tritide particles and the dosimetry of an inhalation exposure to those particles could be quite different from tritiated water. This paper describes experiments on the dissolution rate of hafnium tritide particles in a simulated lung fluid. The results showed that less than 1% of the tritium was dissolved in the simulated lung fluid for hafnium tritide particles after 215 d. The short-term and long-term dissolution half times were 46 and 4.28 x 10(5) d, respectively. This indicates that hafnium tritide is an extremely insoluble material. Self-absorption of beta rays in the hafnium tritide particles was estimated by a numerical method. The dose coefficients were calculated as a function of particle size using in vitro solubility data and a calculated self-absorption factor. The dose coefficient decreased with aerodynamic diameters in the range of 0.25 to 10 microm, mainly because the self-absorption factor decreased with increasing particle size. For a particle 1 microm in aerodynamic diameter, the dose coefficient of a hafnium tritide particle was about 10 times higher than that of tritiated water but was about 1.4 times lower than that calculated by ICRP Publication 71 for Type S tritiated particles. The ICRP estimate did not include a self-absorption factor and thus might have overestimated the dose. This finding has significant implications for current health protection guidelines.
Compared to the conventional axisymmetric dual throat nozzle, the axisymmetric divergent dual throat nozzle (ADDTN) can offer larger thrust vector angles. However, the starting problem maybe exists in the ADDTN and results in a huge thrust loss. In this paper, the ADDTN starting problem has been studied by steady and unsteady numerical simulations. The effects of nozzle geometric parameters on internal nozzle performance have been discussed in detail, including cavity divergence angle, cavity convergence angle, cavity length, expansion ratio, rounding radius at the nozzle throat, and rounding radius at the cavity bottom. And, the shock oscillation phenomenon is found inside the recessed cavity in some high-expansion ratio configurations. In addition, a bypass is proposed in this study to solve the ADDTN starting problem. The main numerical simulation results show that the expansion ratio is the most sensitive parameter affecting the starting characteristic of ADDTN, followed by the cavity divergence angle and the cavity length. And, among these parameters, the parameters of cavity convergence angle and rounding radius at the cavity bottom contribute the least to the starting problem. Besides, the ADDTN configurations of large rounding radius at the nozzle throat tend to start.
The dual throat nozzle achieves higher thrust vectoring efficiencies and lesser thrust loss than other fluidic thrust-vectoring nozzles. Separation always occurs at the bottom of the cavity with complex three-dimensional characteristics for the dual throat nozzle. In this paper, by comparing the flow structure, nozzle surface static pressure distributions and skin friction lines, which are obtained by numerical simulations and wind tunnel experiments, an axisymmetric divergent dual throat nozzle is investigated in detail. The main results show the following findings. (1) The experimental schlieren photographs confirm again that the divergent nozzle configuration has the starting problem from an intuitive perspective. Meanwhile, the flow structure and nozzle surface static pressure distributions obtained by numerical simulations are consistent with the experimental results, except for the low nozzle pressure ratios. (2) The circumferential pressure difference is negligible upstream of the separation line but obvious downstream of the separation line. The skin friction lines and nozzle surface static pressure distributions of different circumferential angles obtained by experiments both prove that the actual flow in the axisymmetric divergent dual throat nozzle indeed possesses three-dimensional characteristics. Therefore, it is necessary to utilize the full three-dimensional computational domain to study the complex three-dimensional characteristics of the flow for the axisymmetric divergent dual throat nozzle thoroughly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.