Abstract-A simple and novel WLAN antenna and a kind of neutralization line, which introduces a certain amount of signal to cancel out the unwanted mutual coupling between two antennas, are designed in this paper. The WLAN antenna working at 2.45 GHz and 5.8 GHz frequency bands is designed, fabricated and measured. The simulated and measured results show that the isolation between the two decoupled antennas can be improved to above 20 dB in both frequencies after decoupling. The lumped match network occupies less space for antennas and gains a good matching performance in the operating frequencies.
The accumulation of cadmium (Cd) in the human body through food chain can lead to adverse pregnancy outcomes. In this study, Cd cytotoxicity and its mechanisms in HTR-8/SVneo cells were investigated. Cd disrupted the cellular submicrostructure and inhibited the cell viability in a time-and dose-dependent manner. The levels of reactive oxygen species, malondialdehyde content, and the activities of glutathione peroxidase (GSH-Px) and total superoxode dismutase (T-SOD) were concentrationdependently increased by Cd. In addition, Cd dose-dependently inducedcell apoptosis and decreased cell migration and invasion capacities. Finally, Cd significantly upregulated all the genes related to oxidative stress (SOD1, ROS1, and HSPA6), inflammatory response, cell cycle, apoptosis, and migration and invasion. This study will provide insights into the prevention and treatment of pregnancy-related diseases caused by Cd intoxication.
Erigeron Canadensis L. (E. canadensis) is a widely distributed invasive weed species in China. Potentially anticancer qualities may exist in its essential oils (EOs). The purpose of this study was to analyze the components of the EOs of E. canadensis and their effects on the normal liver cell lines L02 and the human cervical cancer cell lines HeLa. The EOs from the upper region of E. canadensis were prepared, its components were identified by GC/MS. Cell viability, cell morphology observation, AO/EB dual fluorescence staining assay, flow cytometry, mitochondrial membrane potential, western blot, caspase inhibitor test, and oxidative stress tests were used to investigate the impact of the EOs on HeLa cells. Network pharmacological analysis was employed to study the potential mechanism of the EOs in the treatment of cervical cancer. According to the findings, the EOs had 21 chemical components, of which limonene made up 65.68 %. After being exposed to the EOs, the cell viability of HeLa and L02 dramatically declined. The inhibition of EOs was more effective than that of limonene when used in an amount equivalent to that in the EOs. L02 cells were less susceptible to the cytotoxicity of EOs than HeLa cells were. Furthermore, EOs altered the cell cycle in HeLa cells and caused oxidative stress and apoptosis. Compared with the control group, the reactive oxygen species (ROS) levels increased in HeLa cells at first and then decreased, total superoxide dismutase (SOD) and catalase (CAT) activities in HeLa cells significantly decreased. G1 phase cells decreased whereas G2/M phase cells increased. The rate of apoptosis rose. Reduced mitochondrial membrane potential and Caspase-3, À 9, and À 12 protein expression were both observed. Nerolidol, dextroparaffinone, and α-pinene were shown to be the primary components for the suppression of HeLa cells, according to the results of the prediction of pharmacologic targets. In conclusion, findings of this study indicated the EOs may have the potential to curb the growth of cervical cancer cells. Further research is needed to explore the in vivo effect of EOs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.