Since flash memory has many attractive characteristics such as high performance, non-volatility, low power consumption and shock resistance, it has been widely used as a storage media in embedded and computer system environments. However, there are many shortcomings in flash memory such as potentially high I/O latency due to erase-before-write and poor durability due to limited erase cycles. To address these performance and reliability anomalies, many large-scale storage systems use redundancy-based parallel access schemes such as RAID techniques. However, such redundancy-based schemes incur high overhead due to generating and storing redundancy information, especially in flash-based storage systems. In this paper, we propose a novel and performance-effective approach using a redundancy-based data management scheme in flash storage, called Flash-aware Redundancy Array. The proposed technique not only reduces the redundancy management overhead by performing redundancy update operations during idle periods, but also provides a preventive mechanism to recover data from unexpected read errors occurring before such redundancy update operations finish. From the experiments, we found that the proposed technique improves flash-based storage systems by 19% in average execution time as compared to other redundancy-based approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.