Summary Lithium-ion batteries (LIBs) have become one of the main energy storage solutions in modern society. The application fields and market share of LIBs have increased rapidly and continue to show a steady rising trend. The research on LIB materials has scored tremendous achievements. Many innovative materials have been adopted and commercialized by the industry. However, the research on LIB manufacturing falls behind. Many battery researchers may not know exactly how LIBs are being manufactured and how different steps impact the cost, energy consumption, and throughput, which prevents innovations in battery manufacturing. Here in this perspective paper, we introduce state-of-the-art manufacturing technology and analyze the cost, throughput, and energy consumption based on the production processes. We then review the research progress focusing on the high-cost, energy, and time-demand steps of LIB manufacturing. Finally, we share our views of challenges in LIB manufacturing and propose future development directions for manufacturing research in LIBs.
Flexible power sources have shown great promise in next-generation bendable, implantable, and wearable electronic systems. Here, flexible and binder-free electrodes of Na3V2(PO4)3/reduced graphene oxide (NVP/rGO) and Sb/rGO nanocomposites for sodium-ion batteries are reported. The Sb/rGO and NVP/rGO paper electrodes with high flexibility and tailorability can be easily fabricated. Sb and NVP nanoparticles are embedded homogenously in the interconnected framework of rGO nanosheets, which provides structurally stable hosts for Na-ion intercalation and deintercalation. The NVP/rGO paper-like cathode delivers a reversible capacity of 113 mAh g(-1) at 100 mA g(-1) and high capacity retention of ≈96.6% after 120 cycles. The Sb/rGO paper-like anode gives a highly reversible capacity of 612 mAh g(-1) at 100 mA g(-1) , an excellent rate capacity up to 30 C, and a good cycle performance. Moreover, the sodium-ion full cell of NVP/rGO//Sb/rGO has been fabricated, delivering a highly reversible capacity of ≈400 mAh g(-1) at a current density of 100 mA g(-1) after 100 charge/discharge cycles. This work may provide promising electrode candidates for developing next-generation energy-storage devices with high capacity and long cycle life.
Many recycling processes have been developed for spent Li-ion batteries (LIBs), such as pyrometallurgy, hydrometallurgy, and direct recycling. For all the recycling methods, however, impurities are always introduced from the current collectors or casing materials, especially aluminum (Al), which might lead to negative effects on recovered electrode materials. Therefore, it is significant to determine the impacts of Al impurity on recovered materials. Here, the influence of the Al impurity for the synthesized LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622) precursor and cathode is systematically studied. The cell with 0.2 at % Al impurity displays the highest reversible capacities (145.2, 130.5, and 100.3 mAh g −1 from 2, 3, and 5 C, respectively) and striking cycling capability at 2 C after 100 cycles with the highest retention capacity of 138.5 mAh g −1 . Meanwhile, the excess Al ions (5 at %) lead to the Li/Mn superlattice structure and deteriorate electrochemical performance of the synthesized NCM622 cathode.
Lithium‐ion battery electrodes are manufactured using a new additive manufacturing process based on dry powders. By using dry powder‐based processing, the solvent and its associated drying processes in conventional battery process can be removed, allowing for large‐scale Li‐ion battery production to be more economically viable in markets such as automotive energy storage systems. Uniform mixing distribution of the additive materials throughout the active material is the driving factor for manufacturing dry powder‐based Li‐ion batteries. Therefore, this article focuses on developing a physical model based on interfacial energies to understand the mixing characteristics of the dry mixed particulate materials. The mixing studies show that functional electrodes can be manufactured using dry processing with binder and conductive additive materials as low as 1 wt% due to the uniformly distributed particles. Electrochemical performance of the dry manufactured electrodes with reduced conductive and binder additive is promising as the cells retained 77% capacity after 100 cycles. While not representative of the best possible electrochemical performance of Li‐ion batteries, the achieved electrochemical performance of the reduced conductive and binder additive electrodes with LiCoO2 as the active material confirms the well distributed nature of the additive particles throughout the electrode matrix.
The lithium-ion battery (LIB) recycling market is becoming increasingly important because of the widespread use of LIBs in every aspect of our lives. Mobile devices and electric cars represent the largest application areas for LIBs. Vigorous innovation in these sectors is spurring continuous deployment of LIB powered devices, and consequently more and more LIBs will become waste as they approach end of life. Considering the significant economic and environmental impacts, recycling is not only necessary, but also urgent. The WPI group has successfully developed a closed-loop recycling process, and has previously demonstrated it on a relatively small scale 1 kg spent batteries per experiment. Here, we show that the closed-loop recycling process can be successfully scaled up to 30 kg of spent LIBs from electric vehicle recycling streams, and the recovered cathode powder shows similar (or better) performance to equivalent commercial powder when evaluated in both coin cells and single layer pouch cells. All of these results demonstrate the closed-loop recycling process has great adaptability and can be further developed into industrial scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.