The chemical looping processes utilize lattice oxygen in oxygen carriers to convert carbonaceous fuels in a cyclic redox mode while capturing CO 2. Typical oxygen carriers are composed of a primary oxide for active lattice oxygen storage and a ceramic support for enhanced redox stability and activity. Among the various primary oxides reported to date, iron oxide represents a promising option due to its low cost and natural abundance. The current work investigates the effect of support on the cyclic redox performance of iron oxides as well as the underlying mechanisms. Three ceramic supports with varying physical and chemical properties, i.e. perovskite-structured Ca 0.8 Sr 0.2 Ti 0.8 Ni 0.2 O 3 , fluorite-structured CeO 2 , and spinel-structured MgAl 2 O 4 , are investigated. The results indicate that the redox properties of the oxygen carrier, e.g. activity and long-term stability, are significantly affected by support and iron oxide interactions. The perovskite supported oxygen carrier exhibits high activity and stability compared to oxygen carriers with ceria support, which deactivate by as much as 75% within 10 redox cycles. The high stability of perovskite supported oxygen carrier is attributable to its high mixed ionic-electronic conductivity. Deactivation of ceria supported samples results from solidstate migration of iron cations and subsequent enrichment on the oxygen carrier surface. This leads to agglomeration and lowered lattice oxygen accessibility. Activity of MgAl 2 O 4 supported oxygen carrier is found to increase during redox cycles in methane. The activity increase is a consequence of surface area increase caused by filamentous carbon formation and oxygen carrier fragmentation. While higher redox activity is desired for chemical looping processes, physical degradation of oxygen carriers can be detrimental.
Efficient and environmentally friendly conversion of methane into syngas is a topic of practical relevance for the production of hydrogen, chemicals, and synthetic fuels. At present, methane‐derived syngas is produced primarily through the steam methane reforming processes. The efficiencies of such processes are limited owing to the endothermic steam methane reforming reaction and the high steam to methane ratio required by the reforming catalysts. Chemical looping reforming represents an alternative approach for methane conversion. In the chemical looping reforming scheme, a solid oxygen carrier or “redox catalyst” is used to partially oxidize methane to syngas. The reduced redox catalyst is then regenerated with air. The cyclic redox operation reduces the steam usage while simplifying the heat integration scheme. Herein, a new Fe2O3@LaxSr1−xFeO3 (LSF) core–shell redox catalyst is synthesized and investigated. Compared with several other commonly investigated iron‐based redox catalysts, the newly developed core–shell redox catalyst is significantly more active and selective for syngas production from methane. It is also more resistant toward carbon formation and maintains high activity over cyclic redox operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.