The majority of existing spectrum prediction models in Cognitive Radio Networks (CRNs) don't fully explore the hidden correlation among adjacent observations. In this paper, we first develop a novel prediction approach termed high-order hidden bivariate Markov model (H 2 BMM) for a stationary CRN. The proposed H 2 BMM leverages the advantages of both HBMM and high-order, which applies two dimensional parameters, i.e., hidden process and underlying process, to more accurately describe the channel behavior. In addition, the current channel state is predicted by observing multiple previous states. Afterwards, the mobility of secondary users is fully considered and we propose an advanced approach based on H 2 BMM, termed Advanced H 2 BMM, to accommodate a mobile CRN. Extensive simulations are conducted and results verify that the prediction accuracy is significantly improved using the proposed (H 2 BMM. The Advanced H 2 BMM is also evaluated with comparison to H 2 BMM and results show considerable improvements of H 2 BMM in a mobile environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.