We experimentally demonstrate a novel optical fiber chemosensor for trace Cu2+ ions detection that is implemented by using an in-line optical fiber Mach–Zehnder interferometer (MZI) in conjunction with an optoelectronic oscillator (OEO). The MZI is fabricated by lateral offset splicing a section of D-shaped fiber between two single-mode fibers. It splices the broadband optical source into a sinusoidal-shaped light, which can form a single passband microwave photonic filter (MPF) by combining the Mach–Zehnder modulator, a segment of fiber and a photodetector. The center frequency of the MPF, determined by the free spectra range of MZI, is affected by the solution concentration. Incorporating the MPF in the OEO sensor, the oscillation frequency is determined by the solution concentration. Therefore, we can estimate the solution concentration by measuring the microwave frequency change. We carry out a proof to concept experiment. High sensitivity Cu2+ ions concentration sensing with sensitivity of 13 Hz/(μM/L) is achieved. The maximum measurement error of concentration obtained is within 1.38 μM/L. The proposed sensor has merits of high interrogation speed, simple operation, high sensitivity and accuracy, offering the potentials in a wide range of biological application scenarios.
We propose and demonstrate a new scheme for enhancing the sensitivity of an optical fiber vibration sensor based on microwave interferometry, which is realized by an incoherent optical Michelson interferometer (MI). The sensing arm of the MI is sensitive to environmental vibration; this will cause changes in the phase of the reflection spectra in the microwave domain. The phase sensitivity can be improved by adjusting the power ratio of the two beams in the interferometer and the driving frequency of the modulator. The system can overcome the problem of interference fading so that it is immune to environmental disturbance. The proposed scheme has merits of simplicity and compact configuration, and may provide a new type of high-precision fiber sensor for measuring vibration, temperature, strain, and so on.
We have proposed and experimentally demonstrated an optical fiber strain sensor with high precision and extended dynamic range based on a coupled optoelectronic oscillator (COEO). The COEO is a combination of an OEO and a mode-locked laser, sharing one optoelectronic modulator. The feedback between the two active loops makes the oscillation frequency equal to the mode spacing of the laser. It is equivalent to a multiple of the natural mode spacing of the laser, which is affected by the applied axial strain to the cavity. Therefore, we can evaluate the strain by measuring the oscillation frequency shift. Higher sensitivity can be obtained by adopting higher frequency order harmonics owing to the accumulative effect. We carry out a proof-to-concept experiment. The dynamic range can reach 10000 με. Sensitivities of 6.5 Hz/με for 960 MHz and 13.8 Hz/με for 2700 MHz are obtained. The maximum frequency drifts of the COEO in 90 mins are within ±148.03 Hz for 960 MHz and ±303.907 Hz for 2700 MHz, which correspond to measurement errors of ±22 με and ±20 με. The proposed scheme has the advantages of high precision and high speed. The COEO can generate an optical pulse whose pulse period is influenced by the strain. Therefore, the proposed scheme has potential applications in dynamic strain measurement.
A radio frequency (RF)-assisted Sagnac interferometer based on a dual-loop optoelectronic oscillator (OEO) is experimentally demonstrated for high-precision magnetic field measurement, in which the tapered fiber covered with the magnetic fluid (MF) as the magnetic field sensing head is embedded in the Sagnac interferometer. The evanescent field of the tapered fiber can interact with the MF under the external magnetic field to cause the birefringence variation of the fundamental mode, leading to the change in the free spectral range (FSR) of the interferometer, which can be mapped to the oscillation frequency shift of the OEO in the microwave domain. By the above converting, the magnetic field measurement with high interrogation speed and resolution can be realized. In addition, the designed device shows a certain measurement directionality of the magnetic field due to two orthogonally polarized fundamental modes asymmetric to the magnetic field, obtaining a good conformity with the constructed theoretical models. The experimental results show the maximum magnetic field sensitivities of 159.4 Hz/mT in the range of 8.48-27.83 mT, and 350.8 Hz/mT in the range of 0-5.14 mT, corresponding to the light wave vector parallel and perpendicular to the magnetic field, respectively.
We propose and demonstrate a new, to the best of our knowledge, technique to implement a high-speed and highly sensitive torsion sensor based on a coupled optoelectronic oscillator (COEO) incorporating nonlinear polarization rotation (NPR). The COEO consists of a mode-locked laser loop and an OEO loop. In the laser loop, the NPR effect effectively induces intensity- and wavelength-dependent loss, which acts as a Lyot birefringent fiber filter. When twisting the polarization-maintaining fiber (PMF), the transmission of the filter varies as well as the laser output wavelength. In the OEO loop, the optical source is provided by the output signal of the mode-locked laser. The variation in the optical carrier wavelength changes the time delay and the oscillation frequency of the OEO loop. The oscillation frequency shift is a linear function of the twist angle. Sensitivities of −60.006 Hz/deg over 360° for a 48 cm PMF and −180.996 Hz/deg over 92° for a 22 cm PMF are achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.