Objectives: Clinical deterioration in hospitalized children is associated with increased risk of mortality and morbidity. A prediction model capable of accurate and early identification of pediatric patients at risk of deterioration can facilitate timely assessment and intervention, potentially improving survival and long-term outcomes. The objective of this study was to develop a model utilizing vital signs from electronic health record data for predicting clinical deterioration in pediatric ward patients. Design: Observational cohort study. Setting: An urban, tertiary-care medical center. Patients: Patients less than 18 years admitted to the general ward during years 2009–2018. Interventions: None. Measurements and Main Results: The primary outcome of clinical deterioration was defined as a direct ward-to-ICU transfer. A discrete-time logistic regression model utilizing six vital signs along with patient characteristics was developed to predict ICU transfers several hours in advance. Among 31,899 pediatric admissions, 1,375 (3.7%) experienced the outcome. Data were split into independent derivation (yr 2009–2014) and prospective validation (yr 2015–2018) cohorts. In the prospective validation cohort, the vital sign model significantly outperformed a modified version of the Bedside Pediatric Early Warning System score in predicting ICU transfers 12 hours prior to the event (C-statistic 0.78 vs 0.72; p < 0.01). Conclusions: We developed a model utilizing six commonly used vital signs to predict risk of deterioration in hospitalized children. Our model demonstrated greater accuracy in predicting ICU transfers than the modified Bedside Pediatric Early Warning System. Our model may promote opportunities for timelier intervention and risk mitigation, thereby decreasing preventable death and improving long-term health.
Febrile neutropenia (FN) is a common condition in children receiving chemotherapy. Our goal in this study was to develop a model for predicting blood stream infection (BSI) and transfer to intensive care (TIC) at time of presentation in pediatric cancer patients with FN. We conducted an observational cohort analysis of pediatric and adolescent cancer patients younger than 24 years admitted for fever and chemotherapy-induced neutropenia over a 7-year period. We excluded stem cell transplant recipients who developed FN after transplant and febrile non-neutropenic episodes. The primary outcome was onset of BSI, as determined by positive blood culture within 7 days of onset of FN. The secondary outcome was transfer to intensive care (TIC) within 14 days of FN onset. Predictor variables include demographics, clinical, and laboratory measures on initial presentation for FN. Data were divided into independent derivation (2009–2014) and prospective validation (2015–2016) cohorts. Prediction models were built for both outcomes using logistic regression and random forest and compared with Hakim model. Performance was assessed using area under the receiver operating characteristic curve (AUC) metrics. A total of 505 FN episodes (FNEs) were identified in 230 patients. BSI was diagnosed in 106 (21%) and TIC occurred in 56 (10.6%) episodes. The most common oncologic diagnosis with FN was acute lymphoblastic leukemia (ALL), and the highest rate of BSI was in patients with AML. Patients who had BSI had higher maximum temperature, higher rates of prior BSI and higher incidence of hypotension at time of presentation compared with patients who did not have BSI. FN patients who were transferred to the intensive care (TIC) had higher temperature and higher incidence of hypotension at presentation compared to FN patients who didn’t have TIC. We compared 3 models: (1) random forest (2) logistic regression and (3) Hakim model. The areas under the curve for BSI prediction were (0.79, 0.65, and 0.64, P < 0.05) for models 1, 2, and 3, respectively. And for TIC prediction were (0.88, 0.76, and 0.65, P < 0.05) respectively. The random forest model demonstrated higher accuracy in predicting BSI and TIC and showed a negative predictive value (NPV) of 0.91 and 0.97 for BSI and TIC respectively at the best cutoff point as determined by Youden’s Index. Likelihood ratios (LRs) (post-test probability) for RF model have potential utility of identifying low risk for BSI and TIC (0.24 and 0.12) and high-risk patients (3.5 and 6.8) respectively. Our prediction model has a very good diagnostic performance in clinical practices for both BSI and TIC in FN patients at the time of presentation. The model can be used to identify a group of individuals at low risk for BSI who may benefit from early discharge and reduced length of stay, also it can identify FN patients at high risk of complications who might benefit from more intensive therapies at presentation.
Objectives:Febrile neutropenia (FN) is a common condition in children receiving chemotherapy. Our goal in this study was to develop a model for predicting blood stream infection (BSI) and transfer to intensive care (TIC) at time of presentation in pediatric cancer patients with FN. Methods: We conducted an observational cohort analysis of pediatric and adolescent cancer patients younger than 24 years admitted for fever and chemotherapy-induced neutropenia over a 7-year period. We excluded stem cell transplant recipients who developed FN after transplant and febrile non-neutropenic episodes. The primary outcome was onset of BSI, as determined by positive blood culture within 7 days of onset of FN. The secondary outcome was transfer to intensive care (TIC) within 14 days of FN onset. Predictor variables include demographics, clinical, and laboratory measures on initial presentation for FN. Data were divided into independent derivation (2009-2015) and prospective validation (2015-2016) cohorts. Prediction models were built for both outcomes using logistic regression and random forest and compared with Hakim model. Performance was assessed using area under the receiver operating characteristic curve (AUC) metrics. Results: A total of 505 FN episodes (FNEs) were identified in 230 patients. BSI was diagnosed in 106 (21%) and TIC occurred in 56 (10.6%) episodes. The most common oncologic diagnosis with FN was acute lymphoblastic leukemia (ALL), and the highest rate of BSI was in patients with AML. Patients who had BSI had higher maximum temperature, higher rates of prior BSI and higher incidence of hypotension compared with patients who did not have BSI. FN patients who were transferred to the intensive care (TIC) had higher temperature and higher incidence of hypotension at presentation compared to FN patients who didn’t have TIC. We compared 3 models: (1) random forest (2) logistic regression and (3) Hakim model. The areas under the curve for BSI prediction were (0.79, 0.65, and 0.64, P < 0.05) for models 1,2, and 3, respectively. And for TIC prediction were (0.88, 0.76, and 0.65, P < 0.05) respectively. The random forest model demonstrated higher accuracy in predicting BSI and TIC and showed a negative predictive value (NPV) of 0.91 and 0.97 for BSI and TIC respectively at the best cutoff point as determined by Youden’s Index. Likelihood ratios (LRs) (post-test probability) for RF model have potential utility of identifying low risk for BSI and TIC (0.24 and 0.12) and high-risk patients (3.5 and 6.8) respectively. Conclusions: Our prediction model has a good diagnostic performance in clinical practices for both BSI and TIC in FN patients at the time of presentation. The model can be used to identify a group of individuals at low risk for BSI who may benefit from early discharge and reduce length of stay, also it can identify FN patients at high risk of complications who might benefit from more intensive therapies at presentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.