Pavement heats the near-surface air and affects the thermal comfort of the human body in hot summer. Because of a large amount of connected porosity of porous Portland cement concrete (PPCC), the thermal parameters of PPCC are much different from those of traditional Portland cement concrete (PCC). The temperature change characteristics of PPCC and the effects on surrounding environment are also different. A continuous 48-hour log of temperature of a PCC and five kinds of PPCC with different porosity were recorded in the open air in the hot summer. The air temperatures at different heights above concrete specimens were tested using self-made enclosed boxes to analyze the characteristics of near-surface air temperature. The output heat flux of different concrete specimens was calculated. The results show that the PPCC has higher temperature in the daytime and lower temperature in the nighttime and larger temperature gradient than the PCC. The air temperature above PPCC is lower than that of PCC after solar radiation going to zero at night. The total output heat flux of PPCC is slightly smaller in the daytime and significantly smaller at night than that of PCC. The results of tests and calculations indicate that PPCC contributes to the mitigation of heating effect of pavement on the near-surface air.
An experimental study regarding methanol–diesel dual-fuel (DF) engines was conducted on a modified engine to explore the effects of pilot injection timing and period on the two-stage combustion process caused by the pilot injection strategy. In this study, the two-stage combustion process was determined according to the first two peaks of the second derivative of an in-cylinder pressure (d2p/dφ2) curve. The results show that the peak pressure rise rate (PRR) tended to decrease with advancing pilot injection timing at a high co-combustion ratio (CCR), which reduced combustion noise. The start of the combustion of the main injection diesel (SOC2) could be advanced by increasing the pilot injection period or advancing pilot injection timing at a 42% CCR. At an 18% CCR, the pilot injection timing and period had no significant effect on SOC2. With the advancement of pilot injection timing, the start of the combustion of pilot injection diesel (SOC1) advanced, and generally, the coefficient of variation of the PRR (COVPRR) of the two-stage combustion process increased first and then decreased. However, with the increase in the pilot injection period, SOC1 almost always remained constant and the COVPRR of the two-stage combustion process generally increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.