This paper considers regularized block multiconvex optimization, where the feasible set and objective function are generally nonconvex but convex in each block of variables. It also accepts nonconvex blocks and requires these blocks to be updated by proximal minimization. We review some interesting applications and propose a generalized block coordinate descent method. Under certain conditions, we show that any limit point satisfies the Nash equilibrium conditions. Furthermore, we establish global convergence and estimate the asymptotic convergence rate of the method by assuming a property based on the Kurdyka-Lojasiewicz inequality. The proposed algorithms are tested on nonnegative matrix and tensor factorization, as well as matrix and tensor recovery from incomplete observations. The tests include synthetic data and hyperspectral data, as well as image sets from the CBCL and ORL databases. Compared to the existing state-of-the-art algorithms, the proposed algorithms demonstrate superior performance in both speed and solution quality. The MATLAB code of nonnegative matrix/tensor decomposition and completion, along with a few demos, are accessible from the authors' homepages.
Finding a fixed point to a nonexpansive operator, i.e., x * = T x * , abstracts many problems in numerical linear algebra, optimization, and other areas of scientific computing. To solve fixed-point problems, we propose ARock, an algorithmic framework in which multiple agents (machines, processors, or cores) update x in an asynchronous parallel fashion. Asynchrony is crucial to parallel computing since it reduces synchronization wait, relaxes communication bottleneck, and thus speeds up computing significantly. At each step of ARock, an agent updates a randomly selected coordinate x i based on possibly out-of-date information on x. The agents share x through either global memory or communication. If writing x i is atomic, the agents can read and write x without memory locks.Theoretically, we show that if the nonexpansive operator T has a fixed point, then with probability one, ARock generates a sequence that converges to a fixed points of T . Our conditions on T and step sizes are weaker than comparable work. Linear convergence is also obtained.We propose special cases of ARock for linear systems, convex optimization, machine learning, as well as distributed and decentralized consensus problems. Numerical experiments of solving sparse logistic regression problems are presented.
In this paper, we first study q minimization and its associated iterative reweighted algorithm for recovering sparse vectors. Unlike most existing work, we focus on unconstrained q minimization, for which we show a few advantages on noisy measurements and/or approximately sparse vectors. Inspired by the results in [Daubechies et al., Comm. Pure Appl. Math., 63 (2010), pp. 1-38] for constrained q minimization, we start with a preliminary yet novel analysis for unconstrained q minimization, which includes convergence, error bound, and local convergence behavior. Then, the algorithm and analysis are extended to the recovery of low-rank matrices. The algorithms for both vector and matrix recovery have been compared to some state-of-the-art algorithms and show superior performance on recovering sparse vectors and low-rank matrices.
This paper introduces an algorithm for the nonnegative matrix factorization-and-completion problem, which aims to find nonnegative low-rank matrices X and Y so that the product XY approximates a nonnegative data matrix M whose elements are partially known (to a certain accuracy). This problem aggregates two existing problems: (i) nonnegative matrix factorization where all entries of M are given, and (ii) low-rank matrix completion where nonnegativity is not required. By taking the advantages of both nonnegativity and low-rankness, one can generally obtain superior results than those of just using one of the two properties. We propose to solve the non-convex constrained least-squares problem using an algorithm based on the classic alternating direction augmented Lagrangian method. Preliminary convergence properties of the algorithm and numerical simulation results are presented. Compared to a recent algorithm for nonnegative matrix factorization, the proposed algorithm produces factorizations of similar quality using only about half of the matrix entries. On tasks of recovering incomplete grayscale and hyperspectral images, the proposed algorithm yields overall better qualities than those produced by two recent matrix-completion algorithms that do not exploit nonnegativity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.