We propose an optical-acoustic means to excite broadband terahertz antiferromagnetic (AFM) spin wave in a metal/insulator/antiferromagnet heterostructure. The AFM spin wave is excited by an ultrafast strain wave triggered by a femtosecond pulsed laser based on photoacoustic conversion. This spin wave comprises an AFM exchange spin wave and a magnetoelastic spin wave. Their dispersion curves are overlapped in a wide frequency range by manipulating the Dzyaloshinskii-Moriya interaction (DMI), which is accompanied by lifting the degeneration of the spin-wave modes with opposite chirality. This optical-acoustic excitation of spin waves exploits the laser-induced ultrafast strain waves and avoids the thermal effect from the laser. It paves a way to develop novel AFM devices that can apply for ultrafast information processing and communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.