Transformer, as a strong and flexible architecture for modelling long-range relations, has been widely explored in vision tasks. However, when used in video inpainting that requires fine-grained representation, existed method still suffers from yielding blurry edges in detail due to the hard patch splitting. Here we aim to tackle this problem by proposing FuseFormer, a Transformer model designed for video inpainting via fine-grained feature fusion based on novel Soft Split and Soft Composition operations. The soft split divides feature map into many patches with given overlapping interval. On the contrary, the soft composition operates by stitching different patches into a whole feature map where pixels in overlapping regions are summed up. These two modules are first used in tokenization before Transformer layers and de-tokenization after Transformer layers, for effective mapping between tokens and features. Therefore, sub-patch level information interaction is enabled for more effective feature propagation between neighboring patches, resulting in synthesizing vivid content for hole regions in videos. Moreover, in FuseFormer, we elaborately insert the soft composition and soft split into the feed-forward network, enabling the 1D linear layers to have the capability of modelling 2D structure. And, the sub-patch level feature fusion ability is further enhanced. In both quantitative and qualitative evaluations, our proposed FuseFormer surpasses state-of-the-art methods. We also conduct detailed analysis to examine its superiority. Code and pretrained models are available at https:// github.com/ruiliu-ai/FuseFormer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.