DNA has attracted increasing interest as an appealing medium for information storage. However, target-specific rewriting of the digital data stored in intracellular DNA remains a grand challenge because the highly repetitive nature and uneven guanine-cytosine content render the encoded DNA sequences poorly compatible with endogenous ones. In this study, a dual-plasmid system based on gene editing tools was introduced into
Escherichia coli
to process information accurately. Digital data containing large repeat units in binary codes, such as text, codebook, or image, were involved in the realization of target-specific rewriting in vivo, yielding up to 94% rewriting reliability. An optical reporter was introduced as an advanced tool for presenting data processing at the molecular level. Rewritten information was stored stably and amplified over hundreds of generations. Our work demonstrates a digital-to-biological information processing approach for highly efficient data storage, amplification, and rewriting, thus robustly promoting the application of DNA-based information technology.
The exponential growth of the total amount of global data presents a huge challenge to mainstream storage media. The emergence of molecular digital storage inspires the development of the new-generation higher-density digital data storage. In particular, DNA with high storage density, reproducibility, and long recoverable lifetime behaves the ideal representative of molecular digital storage media. With the development of DNA synthesis and sequencing technologies and the reduction of cost, DNA digital storage has attracted more and more attention and achieved significant breakthroughs. Herein, this Review briefly describes the workflow of DNA storage, and highlights the storage step of DNA digital data storage. Then, according to different information storage forms, the current DNA information encryption methods are emphatically expounded. Finally, the brief perspectives on the current challenges and optimizing proposals in DNA information preservation and encryption are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.