Nitrofurans are a group of widely used veterinary antibiotics, which have been banned due to antibiotics pollution. Development of a rapid and effective method for the detection of nitrofuran antibiotics (NFAs) is an important challenge. Herein, we designed a chemical sensor based on a thin-film composed of the lanthanide metal-organic framework (Ln-MOF) {[Eu (BCA) (H O)(DMF) ]⋅0.5DMF⋅H O} (Eu-BCA, in which BCA is 2,2'-biquinoline-4,4'-dicarboxylate) coated on a cost-effective stainless steel wire mesh (SSWM) by Co O nano-anchor fixation method. The MOF coatings were well adhered to the SSWM, resulting in a three-dimensional porous, flexible, and processable sensor. The structure of the as-prepared MOF thin-film was confirmed by powder X-ray diffraction (PXRD), and the surface morphology was examined by scanning electron microscopy (SEM). Significantly, the Eu-BCA thin-film was highly selective and sensitive to NFAs, and yet remained unaffected by other common antibiotics that may be present. The limits of detection for nitrofurantoin (NFT) and nitrofurazone (NFZ) are 0.21 and 0.16 μm, respectively. NFAs were also successfully detected in water from the Pearl River in Guangzhou, and from bovine serum samples. Hence, the reported Ln-MOF thin-film is a promising sensor for the detection of NFAs, thereby helping to protect human beings from all manner of hazards that arise from the abuse of antibiotics in livestock breeding.
A luminescent lanthanide MOF-based thin film was fabricated by electrodeposition in an anhydride system and this film can be used as a highly selective sensor for CO32− in aqueous solution.
Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.